SDMS US EPA REGION V COLOR - RESOLUTION - 3 IMAGERY INSERT FORM

Multiple pages of this document include color or resolution variations and may be illegible in SDMS due to bad source documents. Unless otherwise noted, these pages are available in monochrome. (The source document page(s) are more legible than the images.) The original document is available for viewing at the Superfund Records Center.

SITE NAME	ENVIROCHEM CORP					
DOC ID#	151776					
DOCUMENT VARIATION	X_COLOR ORRESOLUTION					
PRP						
PHASE	REM					
OPERABLE UNITS						
LOCATION	Box #1 Folder #2 Subsection					
PHASE (AR DOCUMENTS ONLY)	RemedialRemovalDeletion Docket					
	COMMENT(S)					
	VARIOUS MAPS					

CENTRAL SUPPORT ZONE INVESTIGATION REPORT

ENVIRO-CHEM SUPERFUND SITE ZIONSVILLE, INDIANA

PREPARED FOR ENVIRONMENTAL CONSERVATION AND CHEMICAL CORPORATION TRUST

PREPARED BY
DOW ENVIRONMENTAL INC.
PITTSBURGH, PENNSYLVANIA

DEI PROJECT NUMBER 2455.005

JANUARY 1996

TABLE OF CONTENTS

SECTION	I	PAGE
1.0	INTRODUCTION	1-1
1.1	Objective	1-1
1.2	Sampling and Quality Assurance Plans	1-1
2.0	SITE INVESTIGATION ACTIVITIES	2-1
2.1	Soil Sample Locations	2-1
2.2	Soil Sampling Methods	2-2
2.2.1	Decontamination	2-3
2.2.2	Investigation - Generated Wastes	2-3
2.3	Soil Analytical Methods	2-3
2.3.1	VOC Headspace Analyses	2-3
2.3.2	Laboratory VOC Analyses	2-4
2.3.2.1	Soil Sampling Criteria for Laboratory Analyses	2-4
3.0	INVESTIGATION RESULTS	3-1
3.1	Subsurface Lithology	3-1
3.2	Headspace Analytical Results	3-1
3.2	Laboratory Analytical Results	3-2
3.3.1	Soils	3-2
3.3.2	QA/QC Samples	3-3
3.3.3	Data Validation	3-3

APPENDICES

A	SOIL BORING LOGS
В	VOC HEADSPACE ANALYSES LOGS
C	DATA VALIDATION REPORTS

TABLE OF CONTENTS

TABLES

2-1	Soil Boring Location Coordinates
2-2	Acceptable Soil Concentrations
3-1	VOC Headspace Analyses
3-2	Sample Information Summary
3-3	Soil VOC Analyses
3-4	Aqueous VOC Analyses

FIGURES

1-1	Site 1	Location

2-1 Soil Boring Locations

1.0 INTRODUCTION

This report presents the results of the Central Support Zone Investigation (CSZI) conducted at the Enviro-Chem Superfund Site in Zionsville, Indiana, by Dow Environmental Inc. (DEI). The investigation was performed from July 10 to July 14, 1995. The site location is shown on Figure 1.1.

1.1 Objective

The objective of the CSZI was to assess the horizontal and vertical (to 10 feet) extent of volatile organic compounds (VOCs) in soil in the area of the Central Support Zone.

1.2 Sampling and Quality Assurance Plans

The CSZI Field Sampling Plan (FSP), February, 1995, and subsequent letter responses to U.S. EPA comments on the plan, dated April 14, 1995 and June 13, 1995, comprise the sampling approach and methods for the CSZI.

The CSZI Quality Assurance Project Plan, March 1995, and subsequent letter responses to U.S. EPA comments on the plan, dated April 14, 1995, comprise the sampling and analyses quality assurance procedures for the CSZI.

Any variations from these plans are noted in this report.

2.0 SITE INVESTIGATION ACTIVITIES

The following sections describe the site activities undertaken during the CSZI. Sampling and analyses procedures and methodology are described in the sampling and quality assurance plans as noted in Section 1.2.

2.1 Soil Sample Locations

The Central Support Zone area was investigated on a primary sampling grid of 50 foot spacing over a 100 by 150 feet area. The first line of samples (easternmost grid line) was situated next to the site remedial boundary, and the remaining grid extended westerly into the Central Support Zone area.

The primary sampling grid of 12 test borings was located by a field survey conducted by Schneider Engineering Corporation of Indianapolis, Indiana. The primary grid sample locations were referenced to the Indiana State Plan Coordinate System. These 12 test borings were identified as B1 through B12 and were drilled at or within a one foot radius of the locations proposed in the Field Sampling Plan. Four additional test borings were drilled at Tier 1 locations as a result of the primary grid sample analyses as directed by the Field Sampling Plan. These Tier 1 test borings were identified as B13, B14, B15 and B16 and they were located by triangulation tape measurements performed by the DEI field crew. The test boring numbers and grid coordinates are listed on Table 2-1 of this report. Boring locations are shown on Figure 2-1.

Each soil boring was drilled to a depth of ten feet below ground surface (BGS). The one foot thick aggregate layer overlying ground surface within the Support Zone was not sampled or considered as part of the boring log.

Soil samples were taken at two-foot intervals within each boring and field VOC headspace analyses was performed on each sample. Two samples from each test boring were sent offsite for laboratory VOC analyses in accordance with the Field Sampling Plan. The sample depth intervals are noted as A (zero to two feet), B (two to four feet), C (four to six feet), D (six to eight feet), and E (eight to ten feet).

2.2 Soil Sampling Methods

Sixteen soil borings were drilled with a truck-mounted geotechnical drilling rig (Mobile Drill B-61) capable of hollow-stem augering techniques (HSA). DEI retained ATEC Associates, Inc. (ATEC) of Indianapolis, Indiana, to provide drilling services for the project. Drilling operations were supervised by a DEI hydrogeologist or civil engineer. Each borehole was advanced to ten feet below ground surface. Representative soil samples were obtained at two-foot intervals with clean split spoon samplers in accordance with ASTM Standard Method D-1586 (Penetration Test and Split-Barrel Sampling of Soils). Each soil sample was logged and field classified according to the Unified Soil Classification System. A log for each boring is included in Appendix A.

Representative soil samples were taken from each spoon sample for screening by field VOC headspace analyses (see Section 2.3). Representative soil samples were also taken from each spoon sample, when recovery permitted, for offsite laboratory VOC analyses. These samples were temporarily stored in chilled coolers in a secured area until the field screening analyses was completed. The samples for offsite analyses were selected using the following criteria:

- 1. One sample from the zero to five feet interval in each soil boring.
- 2. One sample from the five to ten feet interval in each soil boring.
- Each offsite sample was selected from the sample depth having the highest VOC headspace result in the zero to five feet and five to ten feet depth intervals, unless samples were selected by criteria number four.
- 4. Ten percent of the offsite samples were selected from the sample interval with the lowest or non-detect VOC headspace result within the soil boring.

Quality control samples were taken consistent with the requirements of the CSZI QAPP. The frequency of the QA/QC samples was as follows: (1) one sample was designated for MS/MSD analysis for every 20 or fewer samples; (2) one duplicate was collected for every ten or fewer soil samples; and, (3) equipment rinsate blanks (distilled water) were taken daily.

2.2.1 Decontamination

The drilling rig and all downhole equipment were decontaminated prior to drilling, between boring locations, and before demobilization from the site with a high-pressure, hot water washer. The procedure for cleaning split spoon samplers included a soapy water wash, potable water rinse, and a final deionized water rinse step in accordance with the Field Sampling Plan.

2.2.2 Investigation - Generated Wastes

Decontamination fluids, drill cuttings and miscellaneous solid wastes were collected and placed in labeled DOT 55-gallon drums. The drums were temporarily stored onsite pending subsequent removal by DEI under a separate drummed waste removal action.

2.3 Soil Analytical Methods

All soil samples were analyzed by field VOC screening and 40 percent of the samples were sent offsite for VOC analyses at a CLP-certified laboratory. Additional samples were taken for analytical quality control in accordance with the CSZI QAPP.

2.3.1 VOC Headspace Analyses

An approximately four-ounce representative soil sample was taken from each split spoon sample for field screening by VOC headspace analyses. The soil was placed in a clean, one-quart glass jar and immediately covered with aluminum foil and secured with packing tape. The field geologist used a decontaminated stainless steel trowel and wore clean latex gloves when transferring samples from the split spoon into the headspace containers.

The samples were maintained at room temperature (approximately 70°F) for a minimum of 15 minutes prior to analysis to allow adequate time for equilibrium of any soil gas that may be contained in the jar. After reaching equilibrium, the soil gas samples were analyzed by a photo ionization detector (PID) with a 10.2 electron volt ionization lamp. The probe from the PID was inserted through the foil cover and a peak reading of the resultant PID response was recorded.

After all readings were completed for a sample location, the glass jar was emptied of the remaining sample and decontaminated as per the Field Sampling Plan.

2.3.2 Laboratory VOC Analyses

Soil sample were selected for offsite laboratory analyses based on the field screening results from the soil boring samples. The screening criteria are described in Section 2.2. The VOC target compound list was analyzed for CLP Method OLM 03.0. Ceimic Corporation Laboratories, Narranganset, Rhode Island, performed the analyses.

All offsite VOC analyses were performed on a quick turnaround schedule of 24 hours or less, after lab receipt of the samples. The quick turnaround analyses was considered preliminary, pending final quantification and data validation. Quick turnaround analyses was necessary to determine whether any sampling beyond the primary soil boring grid was needed, and to enable any such sampling to be conducted without excessive delays in field activities.

2.3.2.1 <u>Soil Sampling Criteria for Laboratory Analyses</u>

Initially, two soil samples were selected for offsite lab analyses from each primary grid soil boring. See Section 2.1 for a description of the soil sample locations. The criteria for expansion of the primary sampling grid was based on the preliminary analyses for the perimeter boring samples of the grid. These soil borings included B1, B4, B7, B10, and B11.

The criteria for each perimeter grid boring was the highest VOC concentration measured for each parameter for the two samples taken within each boring. These parameter concentrations were compared to a target concentration based on 125 percent of the values set forth in Table 3-1 of Exhibit A to the Consent Decree in accordance with footnote 6 to Table 3-1. See Report Table 2-2 for the target soil concentrations. If the highest concentration for any parameter within a perimeter grid sample exceeded the target concentration, then Tier 1 samples were taken. This criteria resulted in four Tier 1 soil borings being drilled at locations adjacent to perimeter borings B7, B10 and B11. For the southwest grid corner point, B10, Tier 1 samples were taken in both west and south directions. No Tier 2 samples were taken beyond the Tier 1 sample locations.

3.0 INVESTIGATION RESULTS

3.1 Subsurface Lithology

Subsurface soil conditions within the Central Support Zone Investigation area have been interpreted from the 16 soil borings drilled within the area. The general sequence of subsurface materials encountered with depth is as follows:

Medium gravel aggregate fill (pavement in support zone area)
Zero to one and one-half (0 to 1½) foot thick (±six inches) except in soil borings B1, B2, B3, B6, B9, and B12 which were beyond the limits of the aggregate pavement. Soil boring B2 encountered a six-inch thick concrete pad at three inches BGS.

• Silty clay (upper glacial till)

One and one-half to ten (1½ to 10) foot thick (except in debris fill areas as described below) gray to brown silty clay. Within this zone are numerous thin (one to six-inch) clayey sand, and sand and gravel lenses generally at depths of seven to ten feet BGS. These lenses were generally wet to saturated.

• <u>Debris Fill</u> (construction debris: bricks, concrete, and sand mixed with soil)

The debris fill interval varies from zero to four (0 to 4) feet BGS in soil borings

B14 and B16 to zero to nine and one-half (0 to 9½) feet in B15. Debris fill was
not encountered in any other CSZI soil borings.

Soil boring logs are contained in Appendix A.

3.2 Headspace Analytical Results

VOC screening was performed on soil boring samples by headspace analyses (see Section 2.3.1). Headspace readings were obtained for all soil samples, except in the case when insufficient sample was recovered in the split spoon.

VOC headspace analytical results are summarized on Report Table 3-1. VOC headspace isocontours have been plotted at each 2-foot sample interval using Surfer Version 6.0. Color plots and mesh diagrams for the PID results are contained in the Figures section of this report. Headspace analytical logs, including the rationale for selecting the soil sample for offsite lab analyses, are contained in Appendix B.

3.3 Laboratory Analytical Results

3.3.1 Soils

Soil samples were shipped offsite for laboratory VOC analyses based on the results of field VOC screening. A summary of sample numbers and sample information is contained on Report Table 3-2. Soil VOC analytical results are contained in Report Table 3-3. These results represent the final laboratory data package with validation qualifiers as added by DEI. See Section 3.3.4 for data validation information.

Concentration isocontours have been plotted at 2-foot depth intervals for VOC compounds, 1,1 dichloroethane, trichloroethylene, and tetrachloroethylene. These compounds were selected since they are three of the VOCs most often detected onsite and they are representative of VOC distribution in soils.

For plotting purposes, all samples reported with a "U" are considered not detected. For diluted samples, use of the reported detection limit in graphical plots would unnecessarily bias the results to higher concentrations and would create "false positive" hits for compounds with low cleanup objectives. Analytical results reported as not detected were eliminated from the data set if the detection limits were above the cleanup objective. In the case where the reported detection limit was less than the cleanup objective, one-half of the detection limit was used. The color plots for the three VOC compounds are contained in the Figures section of this report. Tables showing the laboratory data and the values used for graphical plotting are contained with the figures.

3.3.2 QA/QC Samples

Quality assurance/quality control samples were taken in accordance with the QAPP. These included the following:

- 1. Soil sample field duplicates (DUP).
- 2. Field blanks (distilled water).
- 3. Equipment rinsate blank (distilled water).

The field duplicate results for soils are reported on Report Table 3-3. Aqueous blank results are reported separately on Report Table 3-4.

3.3.3 Data Validation

All analytical data were reviewed by DEI according to the U.S. EPA Contract Laboratory Program's National Functional Guidelines for Organic Data Review (February 1994) and with reference to CLP methods and requirements. The results are presented in the Data Validation Reports contained in Appendix C.

_

APPENDIX A SOIL BORING LOGS

PROJECT: ENVIRO-CHEM CS21 (DEI 2455.005)

Loc	stion	of	Bori	ing:				ļ	Water Depth:	Borin	g No
			Γ			2	-		Date:	Feati	ure:
				•	50, ()		ł		Coor	dinates: N
			1	70					i	333.	
				0	\ <4		ا رم	L			Ε
1			1					Dr	illing Method(s): HSA(33/81D)	Grou	nd Elev.:
									MOBIL DRILL B-61		ng Elev.:
Date Starte	s: 7/1	1/9	5 Tm	ne: / 7	:00			Н	ple/Casing Size(s): 8 in / NA	Total	Depth: 10.0 836
											om Elev.:
Comple	ter <u>V</u>	///	_ ^{Thr}	10: <u>//</u>	-33			_			•
					4	_	- U		Sampling Method(s): 5PLIT - SP	POON	5
5	3			£		OVE	8 5_ §		2: 424:		W: 11/2 W/0/20
Q de	ş	Š	¥ 8	چ _ ک	Rec C	3	쩄	اق			
	Ē	du	25	at the	\$ E	Ž		4		<u> </u>	
36	Ŋ	8		35	35	હ	584	8		,	REMARKS
-		4	11	24	,,				ABNT. ROOTS + 5-10'1. F-6	6M.=	NO STN/ODOR
		7	8	27	12		CZ		MNR. SAND	⊣	
	7		7				١,	l	AS ABV:	E^-	DRY
_		B	10	24	12		22			\exists	NO STN/ODE
-4	—		7						GRAY: GRY. DRY 1/2 in. die		PR.REC. ADV. SPT
_		C	5	24	4		WA		ANG. MID. W/ DRY SLTY C	4×. 🗆	5x FROM 4-6'
6	<u>/</u> ,		7						CITY ALL ROW MOIST	_ =	NO STN / DPOR
_		D	2	24	24		a		SFT. MED. PLAS. W/ WET	Ξ	NO STN/ODOR
_ 2			6			İ					MOIST
- -	/		6	2.1	22		CL	1 1	AS ABV: TO 9.4' GROS. FO	-	NO STN/ODOR
1 1		E	7	24	22		GP	1	MIX. FROM 9.4-10.0		MOIST- WET
- <i>10</i>				1				П		_ =	
-		İ			İ					7	
			ļ						2-12-12-12-1		HEAD SPACE ANALYSIS
E									BTH = 10.0 836		PID (ppm)
E											
E										_	IA = 1.5 *
Ė										=	8 = 0.0
=	ĺ									_	C * 0.2
F										_	0 : 0.0
E										_	E , 0.0 *
E							1	}		_	
E											
þ										=	* = lab samples
þ	'									Ξ	The security
F				}		1	1			_	
F										-	
	Date Starter	Date Started: 7/2	Date Started: 7/11/9 Date Complete: 7/11 Flace Complete: 7/11 A B C C C C C C C C C C C C C C C C C C	Date Started: 7/11/95 Time Complete: 7/11 Time Complete: 7/11 Time Started: 7/11 Time Started: 7/11 Time Started: 7/11 Time Started: 7/11 Time Started: 7/11 Time Started: 7/11 Time Started: 7/11/95	Date Started: 7/11/95 Time: 17 Date Complete: 7/11 Time: 17 Unit Complete: 7/11 Time: 17 A 8/0 A 8/0 A 8/0 A 24 A 24 A 24 A 24 A 24 A 24 A 24	Date Started: 7/11/95 Time: 17:00 Date Complete: 7/11 Time: 17:35 Final Report of the Paramonal (100 (100 (100 (100 (100 (100 (100 (10	Date Started: 7/11/95 Time: 17:00 Date Complete: 7/11 Time: 17:35 A 8 10 7 24 12 B 10 7 24 12 B 10 7 24 12 B 10 7 24 12 B 10 7 24 12 B 10 7 24 24 24 C 7 7 2 24 24 C 7 7 2 24 24 C 7 7 2 24 24 C 7 7 2 24 24	Date Started: 7/11/95 Time: 17:00 Date Complete: 7/11 Time: 17:35 Line 17:35	Date Started: 7/11/95 Time: 17:00 Date Complete: 7/11 Time: 17:35 Lind of Complete: 1/11 Time: 17:35 A 8 10 24 12 CL B 11 24 12 CL B 11 24 12 CL B 11 24 12 CL B 11 24 12 CL B 11 24 24 12 CL B 11 24 24 12 CL B 11 24 24 24 CL B 11 24 24 24 CL B 11 24 24 24 CL B 11 24 24 24 CL B 11 24 24 24 CL B 11 24 24 24 CL B 11 24 24 24 CL B 11 24 24 24 CL B 11 24 24 24 CL C 27 7 24 24 CL C 27 7 24 24 CL C 28 6 6 7 7 24 22 CL C 28 6 7 7 24 24 CL C 28 6 7 7 24 22 CL C 28 6 7 7 24 24 CL C 28 7 7 24 24 CL C 28 7 7 24 24 CL C 28 7 7 24 24 CL C 28 7 7 24 24 CL C 28 7 7 24 24 CL C 28 7 7 24 24 CL C 28 7 7 24 24 CL C 28 7 7 24 24 CL C 28 7 7 24 24 CL C 28 7 7 24 24 CL C 28 7 7 24 24 CL C 28 7 7 24 24 CL C 28 7 7 24 24 CL C 28 7 24 24 CL C 28 7 24 24 CL C 28 7 24 24 CL C 28 7 7 24 24 CL C 28 7 24 24 CL C 28 7 24 24 CL C 28 7 24 24 CL C 28 7 24 24 CL C 28 7 24 24 CL C 28 7 24 24 CL C 28 7 24 24 CL C 28 7 24 24 CL C 28 7 24 24 CL C 28 7 24 24 CL C 28 7 24	Date Time: Hole Depth: Casing Depth: Casing Depth: Casing Depth: Casing Depth: Casing Depth: Casing Depth: Drilling Method(s): HSA (3 ³ /8 1D) Mobile Drill B-6/1 Hole/Casing Size(s): Bim NA	Date Time: Hole Depth: Casing Depth: Drilling Method(s): HSA(3 ³ / ₃ D) Group Mobile Drill B-6/ Casing Depth: Drilling Method(s): HSA(3 ³ / ₃ D) Group Mobile Drill B-6/ Casing Depth: Drilling Method(s): HSA(3 ³ / ₃ D) Group Mobile Drill B-6/ Casing Depth: Drilling Method(s): Sim NA

Logged By. D. GELHMUSEN Chkd. By.

Drilling Contractor: MTEC

SOIL BORING LOG

PROLECT: ENVIRO-CHEM (CSZI-DEI 2455.005)

PAGE____OF____

100	GUON	01	501	ııy.			- # <u> </u>	-	Water Depth:	sorin	g No
		٢			-	2			Oate:	Feati	ure:
			0	1	, •	_			īme:		dinates: N
			50'				- 1		Hole Depth:	Joor	
			٥		SUF Zo			- 1_	Casing Depth:		٤
				•	20	~	•	Di	rilling Method(s): <u> </u>	Grou	nd Elev.:
								_			ng Elev.:
Date	nd: <u>7/</u>	117	77. -	0	8:21	,		Н.			Depth: 10.5'856
		,						• •	·		
Comp	lete: <u>7</u>	//2	Thr	09	1:36	•		_		Bott.	om Elev.:
							-		Sampling Method(s): 5PT		
_	7			_	Nec ed	Very	Close				
Depth	Inter	₽	≥ Fi	P. C.	5	Recovery	ation (3	Sample Dimensions: 2 y 24 / N. Ha	mme	er Weight/Drop: 140/30
E (E	Sample Interval	Sample No.	35	₹£	Length Recove (In/cm)	섳	Unified Soli Costion Fleid Determination	夕	Surface Conditions: THIN SOIL	00	ER CONCRETE PAD
Boring (ft/m)	S	San	88	33	33	ફુ	588	g	SOIL DESCRIPTION		REMARKS
	/		4						CONCRETE PAD (UPPER 6 IN. LOWER 7 IN. MED. BRN.	7	BLK. STN 6-13 IN
E		A	11	18	13		CL		GRAV. CLY.	Ⅎ	NO ODDR DRY-SL MOIST
2			11	1					SILTY CLAY: YEL-BRN. W/	⁺≓	NO STN ODOR
,		B	11 13 12	24	12		CL		ORNE, MOTT, + MNR. F-GRAMED. DENSE	~ ∃	DRY
-4	-	1	6						SILTY CLAY: AS ABV.	- コ	NO STN/ODOR
Ē		C	12	24	12		CL			\exists	MOIST
<u>-</u> 6	'		12				_		SILTY CLAY: DRK. BRN. PL	25	NO STN / ODOR
_	/	D		24	18		CL		MED. STIPE WI MNR. F-GRAY WET CLAYEY SAND LENSES 6.7-7.0 AND 8.0-8.3	・コ	V. MOIST - WET
L 8	/_		6			1			6.7-7.0 AND 8.0-8.3	- ゴ	
F T				1						╡	
F										7	
F10										\exists	
E										\exists	
F									BTN = 10.5' 856	\exists	HEAD SPACE ANALYSI
þ										\exists	PID(ppm)
											ZA = 1/3.7 *
F									1	=	B: 49.4
F	-									_	C : 22.5
F	ĺ									_	D , Z.Z
F	1				İ					Ξ	C: 22.5 D: 2.2 E: 2.5 *
F										_	_ <u>_</u>
E										_	
E									ŀ	_	
E										_	# = /26 samples
E	'					1				=	·
E										_	
H		1			1	1			1	_	f

Logged By. D. GELMMSEN Chkd. By.

SOIL BORING LOG

PROLECT: ENVIRO-CHEM CSZI (DEI 2455.005)

	Loc	ation	of	Bor	ing:			-		Water Depth:	Borin	ng No
	-	_ 2		. 3	7			1		Date:	Feat	ure:
	(o²,				REI				Time:	Coor	cainates: N
			5	ó' ,	- 1	ouN	'DA	RY		Hole Depth:	300.	
	50	IPPO	RT	0					ᆫ	Casing Depth:		ε
	Z	ONE	•		1				Di	rilling Method(s): HSA(33/810)	Grou	ind Elev.:
									_	MOBIL DRILL B-61	Casi	ng Elev.:
	Date Starte	d: <u>7/</u>	12	_ Terr	ne: 0	9:40	,		Н	ole/Casing Size(s): 8 M/NA	Toto	1 Depth: 10.0' 256
		ete: _7							_		Bott	om Elev.:
8	Comp			_ '"			_	1.		Sampling Method(s): SPT	***	
12						3	5			Sampling Method(s): 3P/		
	Depth	Sample Interval	Ö	LE	Length Driven (in/am)	BCOVE	Recove		8	Sample Dimensions: 2724 IN	Hamm	er Weight/Drop: 146/38
Date:		•	eld:	15.0	£ 8	Length Reco (h/cm)	봋	Unified Soll outline Peld Determination	일	Surface Conditions: VEGETATE	0	SOIL
_	13	S	Som	88	35	33	8	3	g	SOIL DESCRIPTION		REMARKS
		7		40			Г			SILTY CLAY: MED. BRN. 3	ME_	•
	E		A	10	24	15		CL		ORGANIC MAT., NON-PLAS. TR F-GRAY, CRSE SAND	_	DRY
	F 2	7		11						SILTY CLAY: AS ABY.		BLK STN
B X	F	/	3	3	24	16	1	CL			=	NO ODOR
Chkd.	F4		$\frac{1}{2}$		-					SILTY CLAY: AS ABV.	<u> </u>	SL. MOIST WET STN/OPOR
ᢓ	E		C	3322	24	13		CL		BUT SOFTER	=	(GLUE-LIKE)
3	E	/_										FROM 5.6-6.0
150	Ė į	/	0	2	24	12	1	CL		SILTY CLAY: BRN-GRA (STN) W/ LESS F-GRAV	/ =	STN MOIST-WET
GELHAMSEN	F.	/		132	29	/2				THAN MOOVE	=	DRLR RPT OPOR FROM BOREHOLE *
77	F 8	7		1						SILTY CLAY: DK. GRY-GK	₩	BLK STNS.
3	E		E	1223	24	12		CL		SFT.	_	STRONG VOL ODOR V. MOIST-WET
0	E10	 		3							—-	
By:	E										=	
ed B	上										_	* PID BH = 88
Logge	F		1						l		-	B2 = 0
್ಷಿ	F										=	1
	E										Ξ	
l	Ε			į						BTH = 10.0' 856	_	HEAD SPACE AWALYS
	E	1	ŀ							B/ # = 70.0 238	-	PID(ppm)
22	F							1			-	
ATEC	F							ļ			_	
Ĭ										İ	=	1
Š	E										_	1 -
trac	E										-	
Son											=	E = 658
g.	F									ł	-	* = 126 samples
Drilling Contractor:	E									<u> </u>		
_							_		_			

PROJECT:

ENVIRO

CHEM

1257

120

2455.

300

Location of **REA**.

0

Logged By: D. GELNAUSEN Chkd. By:

_Date:_7-11-95

Date Complete:

7/11

Date Started:

7/11

Drilling Contractor: Boring Depth (ft)m) N Sample Interval U 0 Ø Z Sample No. 5:00 moet aone Blows per 6in/15 cm 100 Length Driven (in/cm) 24 24 12 Length Recovered Ś (In/cm) **Graphic Recovery** Unified Soli Classifi-cation Field Determination 5 5 8 12 5 Graphic Log Sampling Method(s): Surface Conditions: Sample Dimensions: SOIL SUND YE ABV. W/ ABOUT LOWER SPT 06650 856 NO ODOR 57 9 VODOV 572 2000 0 ANALYSIS ď W

BORING

U
\triangleright
G
ri G)
l 일

Tme: //:20	Tme: 10:30	o,) ,	3001E		f Boring:
	Hole/Casing Size(s): 8 / NA	Drilling Method(s): 145A (33/810) MOBIL DRILL B-61	Casing Depth:	Hole Depth:	0010	Water Depth:
Bottom Elev.:	Total Depth: 12.0 856	Ground Elev.:	EN .	Coordinates: N	Feature:	Boring No.

Logged By D. GELMAUSEN Chkd. By.

SOIL BORING LOG

PAGE___/_OF__/

	PRO	LEC	T: _	E	VVI	Ro	- 6	HE	M	CSZI (DEI 2455.005	<u>) </u>
	Loc	ation	of	Bori	ing:				ſ	Water Depth: Born	ing No
		R	EM	. B	ou~	DAL	2 🗸	1		0-4	ture:
		o,—		0 2	?	_		1		Time:	rdinates: N
	5.		50			supp	or	~	1.	Hole Depth:	
		۰,		• 5	•	Za	~ €	٠		asing Depth:	ε
		5	• '	_				-	D	······································	und Elev.:
	<u></u>		,				_		_		ing Elev.:
	Date Starte	d: <u>7</u> /	12	Terr	1e:_//	1:20			Н	ole/Casing Size(s): 2 IN/NA Tot	ol Depth: 12.0'836
,	Date Compi	ete: 7	/12	11/10	16: <u>//</u>	: 20			_	Bot	tom Elev.:
198				_				1		Sampling Method(s): SPT	
12/	ĺ	7				5) J	leeo!		Sumpling method(s).	
Date: 7/	Depth	Sample Interval	d Z	⊾ Æ	T Service of the serv	lecov	Reco		3	Sample Dimensions: 2 × 2 × 1 × Hamm	ner Weight/Drop:/40/30
Date		ě	Sample No.	75	a E	Length Recov (in/cm)	윷		a Sk	Surface Conditions: 1-2 IN LS 6RI	W TO 2.0' BS6
	3 (S)	3	Š	85	33	<u>\$</u>	ŝ	382	å	SOIL DESCRIPTION	REMARKS
	-	/		30	2./	14		Q		SILTY CLAY: DR. BRN. HARD, -W/ ABOUT SY. 1/2-1 in die.	BLK STN ODOR
	Ez		A	30 35 42	24	14		CZ.		grav. + MNR CASE SAND	DRY
	E	7	B	12		,,					NO STN
. B	F .		0	12 13	24	16		CL		MED. DENSE W/ MNR F-GRAN. AND CRSE SAND	SL. MOIST
Chkd.	-4	7		4				Gad		GRAVELLY SAND: UPPER 3 M	NO STN JODOR WET GRAV.
\mathcal{I}	E.		C	5	24	14		CL		GRY. F-GRAV. GROG. TO YEL BRN MOTT. SLTY CLY LOWER II N.	.1
3	۲,	-	3 SILTY CLAY: BRN.		SILTY CLAY: BRN. W/ DRNG	ORNG NO SAND					
GELHAUSEN	Ė,		0	3670	24	24		CL		MOTT., MED. STIFF, MOD. PLAS.	NO STN/ODOR V. MOIST
3	F ?		1	3			İ			SILTY CLAY: AS ABOVE W/	NO STN ODOR
8	E		E	5990	24	16	İ	CL		MNR 1/2 W GRAV.	V. MOIST BH : YERA
9	F~	μ_		10	1	ł					
٦ چ	F										1
Pg E	E	ļ	İ							BTH=12.0'856	HEAD SPACE ANALYSIS
Logged By.	E			ļ						SAMPLES LOBGED	PID(PPM)
ار	F									FROM BASE OF -]
ļ	F						ł			GRAVEL FILL	2400#
	E								Ì		B = /340. *
10	E										D = 142.8
766	F										E = 72.6
8	E										3
' o	E										‡ !
Contractor:	F									-	1
ontr	E		1			1					#: lab samples
	F									-	=
Drilling	F										‡
ā			٠.	<u> </u>		ــــــــــــــــــــــــــــــــــــــ	Ц.	1	_	L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

SOIL BORING LOG PAGE / OF /

	PRO	LEC	T: .		N	IR	0 -	- (42	M C521 (DE1 245	<u>5. (</u>	05)
	Loc	ation	of	Bor	ing:		-	1		Water Depth:	Borir	ig No. <u>6</u>
	-			1	٦			- 1		Date:	Feat	ure:
	(5 2		03				ŀ		Time:	Coor	dinates: N
		PPOA	•-	6		00		l		Hole Depth:		F
	2	ONE	7		8	REI oun.		RY			Grou	nd Elev.:
					1					illing Method(s): <u>HSA(3³/8 ID)</u> MOBIL DRILL B-6/		
	Date		1.4	,		2	-,					ng Elev.:
	Date Starte								He	ole/Casing Size(s): 8 IN/NA	Depth: 10.0 856	
5	Compl	ete:7/	12	Tim	ne: <u>/ 4</u>	<u> </u>	<u> </u>		_	·	Bott	om Elev.:
6/								Ę		Sampling Method(s):		
12	ا ۽ ا	2			<u>c</u>)ver.	Overy	O 5				1/2 /22
Date: 7	To a	sample interval	ğ	≥ 5	Ę,	Length Recov (In/cm)	78 26	25 £	٤	Sample Dimensions: 2×24 W.		
مّ	(m/m)		Ē	55	# E	Marth Agent	Add	office attor stem	ğ	Surface Conditions:	Ne V	
	45)	3	8		35	35	8	584	9	SOIL DESCRIPTION SILTY CLAY: MED. BEN. W		REMARKS No STN / ODOR
	E		A	90	24	16		CL		5-10% F- BRAY, STIFF, SL. F	ZA5.	DRY
	F 2	Κ,		7						SILTY CLAY: AS ABOVE	—∃	BLK STN LOWER GIN.
By:	E		8	7555 21	24	14		CL		SILIY CLAY . AS ABOVE		WI VOL ODOR SL. MOIST
	L 4	_		3								B
_Chkd.	E		C	12	24	15		CL		SILTY CLAY: AS ABOVE, SI PLAS.	• • • =	BLK. STN LOWER GIN W/ODDR
اد	E	<u> </u>		3						•		MOIST
\$	Ė `	/	0	46	24	24		CL		SILTY CLAY: BRN-ORNE A MED. STIFF, MAR F-GRAY		NO ODOR/STN
77.0	Eg	\angle		10		-7		CL			-	M015T
A lhouson	E,		E	5	2.1	,,		CL		SILTY CLAY: UPPERION.	v. =	NO STN/ODOR MOIST - WET
3	F		-	13	24	10		SM		BRN-GRY W/ MAR. F-GRA LOWER & IN. BRN SLTY SA Y-MOST TO NET	<u>~~</u> =	MUSI - WEI
0	E"		1									
B X	E										_	
-ogged By	F										_	
Log	E	ŀ									Ξ	
											_	
	F	ŀ								BTH = 10.0' BS6	=	HEAD SPACE ANALYSIS
	E	! !									=	PID(ppm)
2	E										_	6A = 18.1
97	E										_	B = 33.5
	E										=	C = 307.0 *
ctor	上									•	_	D : 10.0 E : 4.6 #
ţ	E										=	E: 4.6 #
rilling Contractor:	E										_	, ,
ling	þ		1								-	* = lab samples
Ē	-	1			1						_	1

SOIL BORING LOG

	PRO	LEC	T: <u>.</u>		NV	IR	0 –	CH	E	M C521 (DE1 2455.00	5)
	50	, 0	<u>4</u>	Bo	SUF	POR NE	e y	,	L	Date: Fe	ering No ature: pordinates: N E ound Elev.:
		Hete: 7				1:40 1:54			_	MOBIL DRILL B-61 Co	osing Elev.: otal Depth: //.7 ' B56 ottom Elev.:
Contractor: 77.5.5. Logged by	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Sample Interval	Sample Na.	2 4427 4278 8627 9654 Blow per	24 24 24 24	6 6 0 Langth Recovered (In/cm)	Graphic Recovery	TO COSCIONATION OF THE CONTROLLED	Graphic Leg	Sampling Method(s): SPT	mer Weight/Drop: 140/30 TO 1.7' B36 REMARKS NO STN/ODOR SL. MOIST POOR REC. HIT ROCK AT 1'-THIS SAMP. TRASH FROM ABOVE BLK STN AND WET IN LOWER 12 IN NO STN/ODOR MOIST NO STN/ODOR
illing C											1

Logged By D.GELHMMSEN CHKd. By.

SOIL BORING LOG

PAGE / OF /

	PRO	CEC	T: _		E	NV	111	20-	- 6	HEM (521 (DE) 26	755.	005)
	Loc	ation	of	Bor	ing:			1		Water Depth:	Borin	g No
				8		0	9	1	١	Date:		ıre:
					50'	50				īme:		dinates: N
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	50 000	-				. 1	Ì		Hole Depth:	000.	
	2	OWE	. •	o″	50'	ó	Z		L	Casing Depth:		Ε
						nNE		ev	D	filling Method(s): $\frac{HSA(33/81D)}{}$	Grou	nd Elev.:
	<u> </u>								_	MOBIL DRILL 8-61	Casir	ng Elev.:
	Date Starte	nd: 7/	<u>/12</u>	_ Ten	ne: <u>//</u>	<u>:5</u> 5			Н	ole/Casing Size(s): 8 / NA	Tota	Depth: 12.0 856
2		ete: 7							_			om Elev.:
6/2/				_				<u>.</u>		Sampling Method(s): SPT		
	_	3			ے	vered	overy	0 0 0 0 0				
Date:	Dept	Sample Interval	Ŋ	¥ 5	2	Length Recov (In/am)	Rec	Sed Sed Sed Sed Sed Sed Sed Sed Sed Sed	3	Sample Dimensions: Z×ZY /N		
0		Ě	ld L	\$/ \\	\$ E	\$	aphic		Ē		RAV.	
l		8	8	3	35	35	3	586	8	SOIL DESCRIPTION	,	REMARKS
	E	/	A	375	24	14		CZ		SILTY CLAY: DK. BRN W/	₩ <u>]</u>	NO STN/ODOR
-	Ez				[MED. STIFE	\exists	SL. MOIST
B Y	E		B	3650	24	14		CZ		SILTY CLAY: AS ABOVE		AS ABOVE
hkd.	F4	5		Z				CL		SILTY CLAY: YEL - BRN.	SFT-	NO STN/ODER
SEN Chkd.	Ε.		C	1/2	24	16		GC	'	IN UPPER TO IN. W/ SAT GRAV. CLAY IN LOWER 61	·w. =	WATER DRIPPING OFF SPT.
156	F			6	1			5M		SILTY SAND: BRN M. SA	~\O_	.4. 6-4/
3	E,		D	611	24	24		50		+ SILT IN MPPER 18 W., SI LOWER & IN. YEL-BRN. C. SAND, SAT, STIFF	LYEY	SAT. IN LOWER GIN
67	E8	7	1_	6			1	Sc	ł	CLAYEY SAND: UPPER 31 1-M SAND W/ SL PLAS CLY	<i>.</i>	WET
Š	F		E	14	24	24		CL		LOWER 21 IN MED. BRN. SL CLAY, MED. STIFF	.;~ <u>-</u>	NO STN/ODOR
4	E"		1		1						-	
9	E										111	
þ	F											
Logged	F									BTH = 12.0' 856	_	HEAD SPACE ANALYSI.
١	F											PID(ppm)
	E							ļ		SAMPES LOGGED FROM 2.0-T.D.	1	8A = 5.3
	E									FROM 2.0 - 1. D.	_	
22	E										_	8 = 8.3
[7]	F							1			=	c = 7/.7 * D = 67.0 *
F	F								j		_	D = 67.0 x E = 25.3
ا نز	E										_	E · 23.3
Contractor	E										_	
o tr	E										=	* = 126 Samples
	F										=	
Drilling	F										=	
<u>5</u>		<u> </u>	<u> </u>	1					L	<u> </u>		l

AWD	
التنظين	
TOWOLOGES	

AWI tomass	E5	E	NV	IRC) -	· CH		OIL BORING LOG M CSZI DEI 24	PAGE 1 OF 1 55.005
Locg Su Su Date Started:	pport on 50' 7/12 27/13	Bor So Y	ing:	85:3	DIA S	14		Water Depth: Bor Date: Fea Time: Cook Hole Depth: Casing Depth: Grant HSA MOBILE BLI Casing Size(s): BIN Total	ing No iture: prdinates: N E aund Elev.: al Depth: itom Elev.:
	Sample Interval	8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(LED/4) 24	C Length Recovered (in/cm)	Graphic Recovery	Unified Sol Classiff— cotion Field Determination	Graphic Log	Sampling Method(s): SPT Sample Dimensions: Hamm Surface Conditions: VEGETATED SOIL SOIL DESCRIPTION BR. SILTY CLAY (UPPER 12 IN). BR SILTY CLAY W/AUG. MED GRAVEL (LOWER BIN). ORANG -BR SILTY CL W/ PINE BRAVEL (BLACK)	REMARKS
208	/ c	1142593	24	20 22 18				ORANG-BR. SILTY CL W/ FINE GRAVEL (LS) (UPPER 12IN). ORAY SILTY CL W/ FINE GRAVEL (LOWER BIN). GRAY SILTY CL W/FINE GRAVEL (LS) (UPPER 12IN)	MOIST NO ODOR
36 pa6607 35								BR CLAYEY SAND (21N) GRAY SIUTY CL. W/FINE GRAVEL (41N) BR CLAYEY SAND (41N LOWER) BR. SANDY CL W/FINE	NO ADOR.
The contractor of the contract								GRAVEL AND COARSE SHND (UPPER 6 IN) GRAY SANDY CL (F2 IN). GRAY MED SAND (LOWER 6 IN.)	NO ODOR. BLACK SAND W/FINE GRAVEL AT 9.5' (21-2 IN. THICK LENS - NO ODOR)

7/11/95

D. CO. HAMERN

Location of Boring: PROJECT: CHEM

Water Depth:

Date: <u>.</u>

1250

130

2455.

200

Boring No.

6

Feature:

Coordinates:

z

Drilling Method(s): HSA

(33/810

Ground Elev.:

DRILL

8-61

Casing Elev.:

Casing Depth:

Hole Depth:

SOIL BORING LOG

PAGE

Completer 7	13	Tme: /	15:10		Bottom Elev.	ev.:
	\dashv		-	, MA-	Sampling Method(s): SPT	
iterval			covere	ecovery di Class id tion	2 x 2 y x Hommer	Weight /Dron:/ YO / 30
ing D im)	rple i re pe /15 c	th D cm)		ohle for Florense	No. 2 GAM.	ă'
Bor Fi			Len	Unit oati Det	SOIL DESCRIPTION	≥II
J				**	CEALET: 1-2 INDIALE POSS	
<u> </u>	24	2	1/2	5	OFR O IN. DK. DRY BLK I	`
					I SAND: BRN. ABOUT BLK	SW/FUEL
-	00 1014	7.5	-	٠ پر		ノンよくひん
Thkd	_			<u>ئ</u>	SAND AS AGOVE IN	
 - 	N.	77	/2	5	BAN- BLK SILTY CLAY	in ni
	unl				CLAY: YEL	STN/OPOR
	D Iww	724	9	5	C-SAND. TR F-GRAV. MOIST	,
		1			75 SUN NUB GOW: AN	3
	KU	24	14	22	ABOUT 10% F-SAND, 70%CLY ODO.	(
	IN				107.51.5.107. F. BRAV 3477	ANGERS.
					₩ 547	AT GRAV. SAWD
ed I					1 5/	X STW
					FROM	W
					1 (5 -	5-6.6'856)
	_				BTH= 12.0'BS6 - 11670	HEAD SPACE AWALYSIS
71	-				53.40	PID (PPM)
—					FROM 1.0 -1.5	W.' " XO
7			_		Ш	B = 10.8
11 						0 " /0.67
111					.11	D = 1.0
					111	
rilling			-		*	= lab Samples

Drilling Contractor: ATEC Logged By. D. GELHAUSEN Chkd. By.

0

24

Z

57

a

2

0000

0

JUMP

24

/2

5

24

N

Boring Depth (ft)m) Sample Interv Sample Na.

BORING LOG

2455.005) PAGE

Sample Interval Sample Interval Sample No. Blows per Sin/15 cm Length Driven (In/om) Length Recovered (In/om) Graphic Recovery Unified Soil Classification Field Determination Graphic Log	Date	REM. Dri	" 50. 0 /2 C.	SUDPORT 09	Location of Boring:	PROLECT: ENVIRO-CHEM
Sampling Method(s): SPT Sample Dimensions: 2 x 24 / w. Hammer Weight/Drop: 140/30 Surface Conditions: No. 2 Grav. to 1.0' 856 SOIL DESCRIPTION REMARKS	Hole/Casing Size(s): 8 11. 11.0 856 Bottom Elev.:	Drilling Method(s): 45A(33/8 in 1D) Ground Elev.: MOSIL DRILL 8-61 Casing Elev.:	Hole Depth: Coordinates: N	Time: Feature:	Water Cepth: Boring No//	M CSZ, (DE1 2455.005)

ATTU
7000 005

SOIL BORING LOG PAGE / OF /

	PRO	JEÇ	T: ,	E	NV	IRC) -	- CH	t E	M CSZI DEI 24	55.005
	- 1	ation			•				Γ		ng No
	5	uppo zo Ni	RT	9	2	OUNI	na e	,,	1	Date: Fea	ture:
		2014		1	50'			·		Time: Coo	rdinates: N
	11		/2	: _ [- 1	1,	Hole Depth:Coo	E
	×	<u>~~</u>	=		-	7,7			L		and Elev.:
	15			!		CON PA		İ	U	1100	
	Date Starte	. 7/	12		16	:10			<u> </u>		ng Elev.:
K									Г3		ol Depth:
6	Date Compl	ete:		Thr	ne: <u>/ 6</u>				_		tom Elev.:
1/15		75				P	,	- yjeso		Sampling Method(s): <u>SPT</u>	
\ i	Depth	Sample Interval	No.	≥ 5	Orken	Recow	Recov	Unified Sol Cl cation Fleid Determination	3		er Weight/Drop:
Date:	(m/s)	elqr.	Sample	715 V	oth (om)	얼	PoE	걸	Surface Conditions: VESETATED SOIL	·
	X	Š	8	85	35	35	કુ	585	8	SOIL DESCRIPTION	REMARKS
			A	1014	24	16				VESETATION W/SILTY SAND =	NO OPOR
	E.62	/	4	14	Ì					LUAPER 6 IN).	DRY
<u> </u>	- ~		B	B • 9	24	18	:			D. BROWN SILTY CL W/MED -	
By:	١.,	/_	0	9		. •				SECTION (LOWER 101N).	
Chkd.	- 10 - 4		_	-000C	24	22					
. 1	ا _م ا		C	9 14						D. BROWN SILTY CL W/MED = GRAVEL (LS) (UPPER 6 IN) =	Moist
247	15 - 15		0	45	24	2.2				-	NO ODOR
3	F			300	27					BROWN SILTY CL , ORANGE CIRON) MOTTUNG	
2	128	/	E								
\mathbf{z}				467	24	פו	Ì			GRAY SILFY CL W/	MOIST
- 1	F 25			6						COARSE SAND (18 IN)	NO ODOR
ا ج	E 10										
Logged	-30									GRAY SILTY CL W/	MOIST
Log	-									MED GRAVEL AND SAND	NO ODOR
1	_3 5				j					LUPPER 6 IN)	, ,
	-									GRAY SILTY CLAY CUMERIS'S	
- 1	E40									BROWN SILTY SAND W/	MOIST
ار								}		GRAVEL (WET) 21N LOUS	
FEC	E45									GRAY SILTY CLAY (1")	(WET).
A	E									GHT ST.	
Contractor:	- 5 0									_	
ntra	E				}]	
	Ess									=	
Drilling	۴Ű									=	
Ē	<u> </u>									-	

Logged By. D. GELMANSEN Chkd. By.

Drilling Contractor:

SOIL BORING LOG

PAGE____OF___/

PRO	CEC	T: _	E	NV	IRC) <u>-</u>	CH	En	1 (521 (DE1 24)	5 5 .	005)
So' Date Starte	od: 7	50 1/3	- Tr	5"		2	Ney .	L	Water Depth: Cate:	ng No	
unden (m/kg)	Sample interval	Sample No.	Blows per Bh/15 cm	Length Driven (in/am)	Length Recovered (in/cm)	Graphic Recovery	Unified Soll Classiff— cation Fletd Determination	Graphic Log		AJ.	to 2.0' BSG. REMARKS
			10725 53 109 109 2	24	14 15 18		CL		SILTY CLAY: DK. BRN., V.S. TO MARD, TON-CONES. W/ LS RK. FRAGS IN LOWER 12 IN SILTY CLAY: AS ABOUT CLAY: BRN-CRN, SFT, NO SAND-GRAV., PLAS. VERY UNIFORM, CONES. SILTY CLAY: MED. BRN., YEL-ORNS., MOTT. MNR F.S. MOD. PLAS., SFT. SILTY CLAY: MED. BRN(M TR F-GRAV + C-SAND BTH = 10.3' BSG SAMPES LOGGED FROM BASE OF GRAVEL FILL TO T.D.	W/	GRY-BLK STN BTEX ODOR DRY-SL. MOIST AS ABOVE NO STN /ODOR V. MOIST SL ODOR/STN. V. MOIST
F									ł	_	1

SOIL BORING LOG PAGE / OF /

	PRO	UEC	T: _	E	EVI	20-	CH	EN	1	CSZI (DE1 2455.0	05	.)
	Si	,' 	13	44'	•				Dr	Water Depth: Date: Time: Hole Depth: Casing Depth: Filling Method(s): HSM (3 3/8 10)	Coord Groun	g No
						1:50 :20			H	ole/Casing Size(s): 8 M/NA		Depth: 12.0 'BSG om Elev.:
Contractor: MEC Logged By. D. GELMAUSEN CHKd. By. Date: 7/18/95		Sample Interval		14 6 64 4 EEVE 6 86 /15 cm	. 1 . 1 . 24 . 24	1 Langth Recovered (In/om)	Graphic Recovery Graphic Sol Caselfin	A C	Graphic Log	Sample Dimensions: 2x24 IN H Surface Conditions: No. 2 GRI SOIL DESCRIPTION FILL: GRY. CONCRETE GROWND-WP W/ AUGER HER CLAYEY GRAVEL: MED. BRN SL PLAS CLY W/ F-GRAV ((MAY DIA 12M) SILTY CLAY: BRN. MED.ST. W/ MNR. F-GRAV. SILTY CLAY: BRN. MED.ST. W/ MNR. F-GRAV. SILTY CLAY: AS ABOVE BTH = 12.0' BSG SAMPLES LOGGEL FROM BASE OF GRAVEL FILL-T.D	amme 4v.	REMARKS PROVE IST SPT. I' HIT CONCRETE SLAB ALLES FOR MOIST SL ODOR STN V. MOIST
rilling	F										-	

PROLECT:

ENVIRO-CHEM

Secretion of Boring:

Water Depth:

FLM65

Date Started:

7/13

Tme /7:00

Hole/Casing Size(s):

Total Depth: Casing Elev.:

> 10. 0

856

Drilling Method(s):

33/01

Ground Elev.:

Casing Depth:

Hole Depth:

in e: Date:

Drilling Contractor: <u>ATEC</u> Logged By: <u>L</u>	. GELA	MUSE	Chk	d. By:		D	ote: ///3/	75
	<i>9</i>	1111	, ,	(,	(A)	Depth	Complete:
						Sampl	e Interval	
	N	0	C	00	1	Sampl	e No.	
	N	wwww		50 50 50	369	Blows 6in/15	per cm	
	24	24	24	74	18	Longth (in/on	n Driven n)	
	3	w	¥	12	ú	Length (In/or	Recovered	- ;
						Graphi	c Recovery	1
	63	\$	Ž	Ž	3	Unified cotion Determ	Soli Classifi	7
						Graphi	c Log],
BTH = 10.0'856 Samples 109900 From 6360 of Fill to T.D.	FILL: AS ABOVE TO 9"(UPPER 12 M.) LOWER 12 M. BRN, WET SILTY CLAY.	FILL: AS MOOVE	FILL: MS MOOVE	FILL: MS MAOUS	FILL: BRICK FRASS. BIK	SURFACE Conditions: No. 2 67674. SOIL DESCRIPTION	g Method(s): SPT Dimensions: 2×24 /4	Bottom
MEAD SPACE AMALYSIS PID(PAM) 15 A = 5.3 * B = 0.6 C = 0.0 D = 0.0 E = 0.0 * E = 0.0 * Also Ms-MsD	WATER DRIPPING OFF SPT No STW 1000R	POOR REC. DUE TO BRICK IN TIO SOT.	AS ABOUE	BLK STN	ST WOISE HAN SLN ST OBOX	REMARKS	er Weight/Drop: /40/30	Com clev.:

SOIL BORING LOG

PAGE

	5455.0
Boring No. 15	5.005)

Feature:

Coordinates:

z

Dow Environmental SOIL BORING LOG PAGE / OF /

	⊃RO	UEC	T: _	<u></u>	NV	180	<u> </u>	<u> </u>	18.	M C521 (DE1 243	J . c	,05)	
	Loc	ation	•		•	~		+	Γ	Water Depth:	Borin	g No	
	* 9 44' - p" 1							-	١	Date:		ure:	
	72.5'							1		Time:	Coor	dinates: N	
	* 16 25 D 10									Hole Depth:		Ε	
	5									rilling Method(s): HSA (33/810)	Grou	nd Elev.:	
	# : FLACE											ng Elev.:	
	Date 7/13 Time:								—		Depth: 10.0'856		
									П	ole/Casing Size(s): PIN/NA			
1	Date Complete: 7/13 Time:										Bott	om Elev.:	
Date: 7//3/9					Length Driven (In/cm)	Length Recovered (In/cm)	Graphic Recovery	Unified Soll Classifi— pation Field Determination	te Log	Sampling Method(s): SPT			
	(man) Depth	Sample Interval	Sample No.	Blows per Sh/15 cm						Sample Dimensions: 2 × 24 1N H		Weight /Dean / 40/50	
										Surface Conditions: No. 2 Gr			
									ğ	SOIL DESCRIPTION		REMARKS	
		/		367		14		NA	Ť	FILL: BRICK, NAILS, SURFACE	5-	SPT 41 0.0-2.0	
			A	7 50	24					GRAV. SOME CLY. PCE. OF LINER FROM O.S' BSG.	Ξ	CLY W/ BLK STN/ODER	
	Z		1							NO SAMPLE:		DRLR. ADV. AUGERS	
9	E		B	NA	MA	MA		NA			=	TO 4' W/OUT FIRST DRIVING SPT.	
SELHMUS EN CHKG.		7		50	,		CL			SANDY CLAY; BRN-BLK. W	7 -	AUGER REFUSAL	
			C		18 24			CZ		RK. FRAGS	Έ	POOR REC. W/ BK STN, SL. ODOR, MOIST.	
		\vdash		3						SILTY CLAY: BRN-GRN, S.	FF-		
			P	24.4	24	26		CL		W/ MNR. F-GRAV.	_	MOIST	
141	-1	7		7						SILTY CLAY: MPPER 14W	? -	V. MOIST	
S	E		2	3	24	20	SC	SC		BRN W/ TR F-GRAT. LOWE 6 IN BAN. CLYEY SAND		POSS. SEPTIC ODOR WET	
ä	F10	<u> </u>	ł	 -								3027	
B,	E												
Logged B	F												
Logs	F										Ξ		
Ī	E									BTH = 10.0' 836	=	HEAD SPACE ANALYSIS	
	þ											PID(ppm)	
J						ļ					=	16A = 1.2 *	
7	E										=	B : N5	
7	E										_	C : NS	
<u>,</u>	E										Ξ	D = 0.6 #	
Contractor:	F										_	E = 0.5	
ntra	E	•									_		
ပိ	F										=	# = 106 samples	
rilling	E										=]	
<u> </u>	r-	1	1	1	1	1	1	1	i	1	_	F .	

APPENDIX B VOC HEADSPACE ANALYSES LOGS

			FOR	M 11.8		2455.	005
			HEADSPAC				
Work Pa	ckage N	umber:	ECC CSZ	:/	Date:	7/11/9	5.
Instrume	nt Type/		OVM 580				
Outside 1	Гетрега	ture (°F):	93				
Gas Selec	ct Settin Boew	_	NA				
Sample Time	Tank No.	L	cation	Depth FT	FID PID	Methane	OVA FID - Methane
1705	01	ECC - B	POIASE	0-2	1.5		
1710			В	2-4	0.0		
1720			C#	4-6	0.2		
1725	4		<u> </u>	6-8	0.0		
1730			<u> </u>	8-10	0.0		
Notes:			enough.				
			FOR CL				
B01-	A	10-5	FT <u>H16</u> 4	165T H	FADSP	ACE)	
			FT '				LECOVERAB
	SAMI	NE NO	TE BOI	-c 10	w RE	COVERY)
		is, DE					

FORM 11.8

HEADSPACE ANALYSIS

Work Package Number: ECC CSZ1 Date: 7/12/95

Instrument Type/Serial No.: 0V11 5805/35697 - 251

Outside Temperature (°F): 94

Gas Select Setting: N/A

	BORI	VG				
Sample Time	Tank No.	Location	Depth FT.	FID PID	Methane	OVA FID - Methane
0905	02	ECC - BOZ ASF	0-2	113.7		
0910		В	2-4	49.4		-
0915		C	4-6	22.5		
0920		D	6-8	2.2		
0925	V	E	8-10	2.5	_	-
0940	63	ECC-BO3ASF	0-2	10.6		_
0945	1	В	2-4	40.7	_	_
0950		C	4-6	700	_	_
0955		D	6-8	1267	_	
1000	1	E	8-10	658	_	
						}

Notes:	CL	P SAMPLE	<u> </u>				
B02 A	}-	(0-5 FT	HIGHEST	voc)			
B02 6	-	(5-10 FT	' LOW	voc'	TO	SATISFY	FSP 10%
B03 C	; -	(0-5 FT	H16 HES	T VO	c)		
B03 I) -	(5-10 FT	H16H6	ST VO	oc)		

FORM 11.8

2455.005

HEADSPACE ANALYSIS

Work Package Number:

Ecc (5727 Date: 7-11-95

Instrument Type/Serial No.: CVM SECS / 35697-251

Outside Temperature (°F): 23° F

Gas Select Setting:

NA

Sample Time	Beaut No.	Location	Depth FT	PID PID	Methane	OVA FID - Methane
1105	04	EK-BOYASF	C-21	1.1		
1110		З	2-4'	4.5		
1115		C	4-6'	25.5		_
1120		D	6-8	3.1	-	
1125	V	E	8-10	0.6	~	-
1140	07	ECC-BOTASF	0-21	0.2		_
1145		В	2-41	2.0	_	
1150		Ċ	4-6'	0.6		
1155		D	6-01	9.5	(
1200	*	E	8-10'	12.9	j	
		Fee				

Notes:	SAMPLES SE	UT FOR C	LP V	065:			
B04 - C	60-5'FT	HIGHEST	HEAD	SPACE)			_
B04 - E	L5-10FT	NON DE	TECT '	TO SH	TISFY F	SP 10%	LE 6'T)
B07-C	(0-5FT	HIGHEST 1	HEADSI	PACE	INP	ECOUERA	81E
SAT	MPLE, NOTE	807-B U	VAS 6	PAVEL	105BRU	s w/low	recov.
B07-E	15-10 FT	HIGHEST	HEA	DSALQ	-)		

J. Harris, DE1

FORM 11.8 **HEADSPACE ANALYSIS** Work Package Number: ECC C521 Date: 7/12/95 Instrument Type/Serial No.: <u>OVM 5805/35697-251</u> Outside Temperature (°F): 94 Gas Select Setting: N/A BORING Location OVA FID -Sample Tank Depth Methane EHD Time No. Methane PID. ECC - BOS A SF 0-2 05 529 1125 В 2-4 1340 1130 C 4-6 264 1135 D 6-8 142.8 1140 72.6 1145 E 8-10 ECC-BOG ASF Mark D. Notes: CLP SAMPLES BOSB - LO-S FT HIGHEST VOC) B 05. C - (5-10 FT HIGHEST VOC) BOBC - CO-5 FT H-

					B6/B9
	FORM	11.8		2455	.005
	HEADSPACE	ANALY	(SIS		
Work Package					95
Instrument Ty	pe/Serial No.: OVM 580	<u>5/3</u> 5	697-2	51	
Outside Tempe	erature (°F): 94				
Gas Select Set					
Sample Fan Time No	•	Depth	PID.	Methane	OVA FID - Methane
1750 06	ECC - BOG A SF	0-2	18.1		
1355	В	2-4	33.5		
1400	C	4-6	307		
1420	D	6-8	10.0	_	
1425 Y	E	8-10	4.6		
1525 09	ECC-BO9ASF	0-2	189.		
1530	В	2-4	89		
1535	C	4-6	18.1		
1540	D	6-8	0.0		
1545 V	Ĕ	8-10	0.3		
lotes:	CLP SAMPLES!				
-	. CO-5 FT HIGHE				
B06E-	(5-10 FT 'LOW	voci	TO SAT	TISFY F	SP REQ'T
B09 A	- (0-5 FT HIGHE	ST V)c)		

BOAD - (5-10 FT 'NON DETECT' TO SATISFY 10% FSP REO'T)

							
			FORM	1 11.8		2459	5,005
			HEADSPACE	E ANALY	'SIS		
Work Pag	ckage N	umber:	ECC CSZ	2./	Date: _	7/11/9	5
Instrumer	nt Type/		OVM 580				
Outside 7	Гетрега	ture (°F):	93				
Gas Selec	ct Settin Boein	-	N/A				
Sample Time	Tank No.		ocation	Depth FT.	-PID PID	Methane	OVA FID - Methane
i445	10	FLL - B	IOA SF	0-2	1.3		
1450			В	2-4	10.8		
1455			C	4-6	15.6		
1500			D	6-8	7.6		
1505	+		E	8-10	27.3		
1555	11	ECC-8	11ASF	0-2	0.6		_
1600			B	2-4	10.2		_
1605			С	4-6	50.2		_
1610			D	6-8	61.5		
1615	+		E	8-10	14.2		
							
Notes:	SA	MPLES	SENT FO	e clp	voc's	:	
B10-	C	10-5 FT	H16485T	HERD	SAACE)		
B10 -	E (5-10 FT	/ •		, <u>)</u>		
B11 - (Ç (0-5 FT	11	,	٠)		**************************************
B11 - E) (5-10 FT			" <u>}</u>		
	- 1						

J. Harris, DE1

FORM 11.8

HEADSPACE ANALYSIS

Work Package Number: ECC Date: 7/12/95

Instrument Type/Serial No.: <u>OVM 580 5/35697-25/</u>

Outside Temperature (°F): 94

Gas Select Setting:

N/A

	BORIN	6				
Sample Time	Tank No.	Location	Depth FT.	PD PD	Methane	OVA FID - Methane
1605	12	ECC-BILASF	0-2	47. 4	J	
1610		В	2-4	494.)	-
1615		C	4.6	691	•	}
1620		D	6-8	249	(
1625	V	Ŀ	8-10	28.5	1	~
1205	08	ECC- 308 A >F	0-2	5.3		_
1210		В	2-4	8.3	_	
1215		С	4-6	71.7	_	
1220		D	6-8	67		_
1225	V	E	8-10	25.3		

Notes:	CL	P	AMPLES			
B08.	C	-	LO-5 FT	HI6HEST	VOC)	
B08	\mathcal{D}	_	C5-10 FT	HIGHEST	Voc)	
B12	B	_	(5-10 Pr	HIGHEST	voc)	
B 12	C		65-10 FT	HIGHEST	voc)	

FORM 11.8

HEADSPACE ANALYSIS

Work Package Number: ECC CS 21 Date: 7/13/95.

Instrument Type/Serial No.: <u>OVM 5805/35697-251</u>

Outside Temperature (°F): 96°

Gas Select Setting: N/A

	BORING	·s				
Sample Time	Tank No.	Location	Depth FT	FID PID	Methane	OVA FID - Methane
14:12	B13	ECC-BI3 ASF	0-2	20.0		
		В	2-4	36.6		
		C	4-6	1.0		
		D	6-8	6.8		
		E	8-10	ND(1)		
		Ecc-BI4 ASF	0-2	ND (1)		
		В	2-4	1.2	 	
		C	4-6	NO (1)		
		0	6-8	9.7		
		6	8-10	1.2		

Notes:	CLP	SAM PLE	5%	(1) INSUFFICIE	ENT RECOVERY/NO DATA
B13	B - 1	HIGHĖST	HEADS PACE,	0-5 FT)	
B 13	0-6		. •	5-10 FT).	
B14	B - (11		0-5 FT)	
B14	D - (_ 11	(1	5-10 FT).	

HEADSPACE ANALYSIS Work Package Number: ECC CSZ Date: 7/13/95
Instrument Type/Serial No.: <u>OVM 5805/35697-251</u> Outside Temperature (°F): <u>96°</u> Gas Select Setting: <u>N/A</u> BOLING Sample Tank Location Depth FID Methane OVA FID - Methane 17:00 B 15 ECC - B 15 A S F 0-2 5.3 B 2-4 0.6
Instrument Type/Serial No.: <u>OVM 5805/35697-251</u> Outside Temperature (°F): <u>96°</u> Gas Select Setting: <u>N/A</u> BOLING Sample Tank Location Depth FID Methane OVA FID - Methane 17:00 B 15 ECC - B 15 A S F 0-2 5.3 B 2-4 0.6
Cas Select Setting: N/A
Sample Tank Location Depth FID Methane OVA FID - FI PID Methane
Sample Time Tank No. Location Depth PID PID PID Methane Methane OVA FID Methane 17:00 B 15 ECC - B 15 A S F 0-2 5.3 0.6
B 2-4 0.6
B 2-4 0.6
C 4-6 0.0
D 6-8 0.0
E 8-10 0.0
16:10 B16 ECC-B16 ASF 0-2 1.2
B 2-4 ND (1)
C 4-6 ND (2)
D 6-8 0.6
E 8-10 0,3
Notes: (1) NO SPOUN SAMPLE TAKEN NO- NO DATA
(2) INSUFFICIENT RECOVERY - NO HS SAMPLE
SAMPLES FOR CLP: BIB A (HIGHEST HEADSPACE O-5 FT.)
B-15.E (NON DETECT , PSP 10% RED'T , ALSO ALL C, D, E NON DETE
B-16 A (HIGHEST HEADSPACE 0-3 FT.)
B-160 (" " 5-10FT)

APPENDIX C DATA VALIDATION REPORTS

Dow Environmental Inc.

Penn Center West Building III, Suite 300 Pittsburgh, PA 15276 Fax: (412) 788-1316

(412) 788-2717

PGH-95-JJS-823

DATE:

August 22, 1995

TO:

Mr. Mark J. Dowiak

Dow Environmental Inc.

Penn Center West, Building III, Suite 300

Pittsburgh, Pennsylvania 15276

FROM:

John J. Smelko

Dow Environmental Inc.

SUBJECT:

Data Validation of Volatile Organic Compounds (VOCs)

Re: Enviro-Chem Superfund (ECC) Site

Ceimic Corporation Project Number: 950487 Sample Delivery Group (SDG) Number: B15A

DEI Project Number: 2455.005

Soil Samples:

B13B B13D B14B B14D B15A **B15E B16A B16D**

DUP04

Field Duplicates:

DUP04 is a field duplicate of B16D.

OVERVIEW

This set of samples, collected on July 13, 1995, from the Enviro-Chem Superfund Site in Zionsville, Indiana, contains nine (9) soil samples, including one (1) field duplicate pair. All samples were prepared and analyzed for volatile organic compounds (VOCs) according to the U.S. EPA Contract Laboratory Program's (CLP) Statement of Work for Organics Analysis. Multi-Media. Multi-Concentration (Version OLM03.0).

SUMMARY

All compounds and analytes were successfully analyzed in all samples. The organic analytical data were evaluated by the following quality assurance/quality control (QA/QC) parameters where applicable: technical holding times and preservation, GC/MS instrument performance checks, initial and continuing calibrations, system monitoring compound/surrogate spike recoveries, method and field blanks, matrix spike/matrix spike duplicates (MS/MSDs), field duplicates, internal standard areas and retention times, analytical sequence, compound identification and quantitation, and transcription. Validated sample analysis results are listed on the attached Data Summary forms. Areas of concern with respect to data quality and usability are discussed below.

MAJOR ISSUES

All positive hits for acetone in all samples, including method blanks, have been determined to be non-detects based on a comparison of the sample/blank mass spectra versus the standard mass spectrum. Although the primary and secondary ions were present in each case, the mass spectra were poorly matched to that of the standard; several major ion peaks were missing from the sample spectra. Moreover, the peaks that were present in the samples were disproportionate with the standard relative ion intensities. Similarly, the mass spectrum for the vinyl chloride concentration reported for sample B14D did not compare very well to that of the standard, but most of the prominent peaks were present in the sample. In addition, there was evidence of a coelution problem affecting the identification and quantitation of this compound. Taking this into consideration, there was a certain amount of doubt as to whether or not vinyl chloride was actually present in this sample. Therefore, it must be considered to be tentatively identified at an estimated concentration, "NJ".

MINOR ISSUES

There was evidence of coelution problems in the mass spectra associated with 2-butanone in samples B14B and B14D. Because of the possibility for the final concentrations of these compounds to be biased, the reported results have been qualified as estimated, "J".

Methylene chloride was found at low level concentrations in all three method blanks associated with the sample data in this package, the highest value being 22 μ g/kg. As a result of this blank contamination, sample results less than ten (10) times the highest blank value have been qualified as non-detect, "U". Note that in instances where the affected sample concentration was less than the contract required quantitation limit (CRQL), the value was raised to the CRQL in addition to the application of the "U" flag. In a similar fashion, any tentatively identified compounds (TICs)

found in any sample that were less than ten (10) times those found in any blank have been lined out, initialled, and dated in the TIC section of this report.

The percent relative standard deviation (%RSD) between the five initial calibration standard relative response factors (RRFs) for bromomethane in the instrument calibration sequence was greater than the 30 percent limit. Thus, all associated data have been qualified as estimated, "UJ", as they were all non-detect.

The continuing calibration check standard associated with sample DUP04 had a percent difference (%D) between its RRF for methylene chloride and the applicable mean initial calibration RRF that was greater than the 25 percent control limit. Consequently, the methylene chloride result reported for DUP04 has been qualified as estimated, "UJ", since it was previously flagged as a non-detect due to blank contamination.

NOTES

Please note that the laboratory reports concentrations that are below the CRQLs but above the instrument detection limits (IDLs) as estimated, "J", since there is an unacceptable level of accuracy at these levels.

After evaluating the results of the B16D/DUP04 field duplicate pair, it was determined that all reported compound concentrations were comparable. Note that an RPD of 50 percent was used as the control limit to make comparisons when both results of the field duplicate pair were greater than five (5) times the CRQL and a control limit of plus or minus two (2) times the CRQL was used when one or both concentrations of the pair were less than five (5) times the CRQL.

A comparison, similar to the field duplicate evaluation, was also made between the non-spiked compounds of the MS/MSD pair and its associated original, unspiked sample, B15E. The only difference in the comparison criteria was that a %RSD was used instead of an RPD when all three associated results were greater than five (5) times the CRQL. Upon completion of the evaluation, it was determined that all associated results were comparable.

There were no trip blanks associated with this sample delivery group, nor were there any storage blanks analyzed by the laboratory.

These data were reviewed according to the U.S. EPA Contract Laboratory Program's <u>National Functional Guidelines for Organic Data Review</u> (February 1994) and with reference to CLP methods and requirements. The results are presented in the Data Summary of this report and should be accepted as qualified.

INFORMATION REGARDING REPORT CONTENT

Attachments:

- 1. Glossary of Data Qualifier Codes.
- 2. Data Summary. This may include:
 - a) All positive results with qualifier codes, if applicable;
 - b) All unusable detection limits qualified with "R"; and
 - c) All estimated detection limits qualified with "UJ".
- 3. Appendix A Results as Reported by the Laboratory.
- 4. Appendix B Tentatively Identified Compounds.
- 5. Appendix C Support Documentation which includes details to support the statements made in this report.

Dow Environmental Inc.

Penn Center West Building III. Suite 300 Pittsburgh. PA 15276 Fax: (412) 788-1316

(412) 788-2717

PGH-95-JJS-822

DATE:

August 22, 1995

TO:

Mr. Mark J. Dowiak

Dow Environmental Inc.

Penn Center West, Building III, Suite 300

Pittsburgh, Pennsylvania 15276

FROM:

John J. Smelko

Dow Environmental Inc.

SUBJECT:

Data Validation of Volatile Organic Compounds (VOCs)

Re: Enviro-Chem Superfund (ECC) Site

Ceimic Corporation Project Number: 950480 Sample Delivery Group (SDG) Number: B02ASL

DEI Project Number: 2455.005

Soil Samples:

ECC-B02ASL	ECC-B02ESL
ECC-B03CSL	ECC-B03DSL
ECC-B05BSL	ECC-B05CSL
ECC-B06CSL	ECC-B06ESL
ECC-B08CSL	ECC-B08DSL
ECC-B09ASL	ECC-B09DSL
ECC-B12BSL	ECC-B12CSL
ECC-DUP2	ECC-DUP3

Equipment Rinsate Blank:

ECC-RINSATE BLANK 1

Field Blank:

ECC-DS WATER (Distilled Water Check Sample)

Field Duplicates:

ECC-DUP2 is a field duplicate of ECC-B06ESL

ECC-DUP3 is a field duplicate of ECC-B12CSL

OVERVIEW

This set of samples, collected on July 12, 1995, from the Enviro-Chem Superfund Site in Zionsville, Indiana, contains one (1) equipment rinsate blank, one (1) field blank, and sixteen (16) soil samples, including two (2) field duplicate pairs. All samples were prepared and analyzed for volatile organic compounds (VOCs) according to the U.S. EPA Contract Laboratory Program (CLP) Statement of Work for Organics Analysis, Multi-Media, Multi-Concentration (Version OLM03.0).

SUMMARY

All compounds and analytes were successfully analyzed in all samples. The organic analytical data were evaluated by the following quality assurance/quality control (QA/QC) parameters where applicable: technical holding times and preservation, GC/MS instrument performance checks, initial and continuing calibrations, system monitoring compound/surrogate spike recoveries, method and field blanks, matrix spike/matrix spike duplicates (MS/MSDs), field duplicates, internal standard areas and retention times, analytical sequence, compound identification and quantitation, and transcription. Validated sample analysis results are listed on the attached Data Summary forms. Areas of concern with respect to data quality and usability are discussed below.

MAJOR ISSUES

All positive hits for acetone in all samples, including many blanks, have been determined to be non-detects based on a comparison of the sample/blank mass spectra versus the standard mass spectrum. Although the primary and secondary ions were present in each case, the mass spectra were poorly matched to that of the standard; several major ion peaks were missing from the sample spectra. Moreover, the peaks that were present in the samples were disproportionate with the standard relative ion intensities. Similarly, the 2-butanone results reported for samples ECC-B05CSL, ECC-B12CSL, and ECC-DUP3, as well as the positive concentration reported for method blank VBLKHE, were deemed to be misidentified based on poor mass spectral matches; these values should all be considered non-detect. Lastly, the mass spectrum for the bromomethane concentration reported for method blank VBLKCC did not compare very well to that of the standard, but most of the prominent peaks were present in the sample. In addition, there was evidence of a coelution problem affecting the identification and quantitation of this compound. Furthermore, the concentration of this compound was reported at a level that was below the contract required quantitation limit (CRQL); relative ion intensities tend to become somewhat skewed at such low levels of detection, making it difficult to make a positive identification. Taking all this into consideration, there was a certain amount of doubt as to whether or not

bromomethane was actually present in this blank. Therefore, it must be considered to be tentatively identified at an estimated concentration.

MINOR ISSUES

There was evidence of coelution problems in the mass spectra associated with 1,1,2,2-tetrachloroethane in sample ECC-B05CSL and with 1,1-dichloroethene and chlorobenzene in sample ECC-B12BSL. Because of the possibility for the final concentrations of these compounds to be biased, the reported results have been qualified as estimated, "J".

As recorded on the chain-of-custody, the glass jar containing sample ECC-B08DSL was broken but was contained in a "Ziploc Baggie" when it was received by the laboratory. Since the integrity of the sample may have been compromised, all positive and non-detect VOC values reported for this sample have been qualified as estimated, "J" or "UJ", respectively.

The equipment rinsate and field blanks were analyzed outside the 7-day holding time for unpreserved aqueous samples. Therefore, all associated aromatic volatile compounds in each of these two samples have been qualified as estimated, "UJ", as they were all non-detect.

One or more of the following compounds were found at low level concentrations in the equipment rinsate blank, the field blank, and all but one of the method blanks associated with the sample data in this package: chloromethane, bromomethane, methylene chloride, acetone, and 2-hexanone. As a result of this blank contamination, sample results less than five (5) times the highest associated blank value for chloromethane, bromomethane, and 2-hexanone and less than ten (10) times the highest associated blank value for the common laboratory contaminants methylene chloride and acetone have been qualified as non-detect, "U". Note that in instances where the affected sample concentration was less than the CRQL, the value was raised to the CRQL in addition to the application of the "U" flag.

The percent relative standard deviations (%RSDs) between the five initial calibration standard relative response factors (RRFs) for bromomethane and methylene chloride in two of the three instrument calibration sequences were greater than the 30 percent limit. Thus, all associated data have been qualified as estimated, "UJ", as they were all non-detect or qualified as non-detect due to blank contamination.

Many of the continuing calibration check standards had percent differences (%Ds) between their RRFs and the applicable mean initial calibration RRFs that were greater than the 25 percent control limit for one or more of the following compounds: methylene chloride, acetone, 2-butanone, carbon tetrachloride, bromoform, 4-methyl-2-pentanone, and 2-hexanone.

Consequently, all associated positive and non-detect sample results have been qualified as estimated, "J" or "UJ", respectively.

Samples ECC-B09DSL and ECC-DUP2 both had low internal standard areas for chlorobenzene-d5. As a result, the laboratory reran these samples at a five-fold dilution. Upon reanalysis, it became evident that there was a matrix effect involved, since all three internal standards in both samples had low area counts. Because only one area count was low in each of the first runs, it was determined that these were the "best" data to report on the Data Summary. An additional factor was involved when assessing the 1,2-dichloroethene (total) results for ECC-DUP2 and ECC-DUP2DL. This compound was over calibration in the initial run at 400 μ g/kg and in the latter run it was biased low due to the low internal standard area counts, although it was within the calibration range at 290 μ g/kg. In both instances, the result would have to be qualified as estimated, "J". Therefore, in order to be conservative, the higher value was deemed to be more appropriate; this value, with the estimation flag, was placed on the Data Summary.

After making field duplicate result comparisons between the ECC-B06ESL/ECC-DUP2 pair and between the ECC-B12CSL/ECC-DUP3 pair, it was determined that the 1,2-dichloroethene (total) and the toluene results were out of control in these two field duplicate pairs, respectively; the relative percent difference (RPD) control of 50 percent was exceeded in both instances. Consequently, the associated concentration in each sample of each pair has been qualified as estimated, "J". Note that an RPD of 50 percent was used as the control limit to make comparisons when both results of the field duplicate pair were greater than five (5) times the CRQL and a control limit of plus or minus two (2) times the CRQL was used when one or both concentrations of the pair were less than five (5) times the CRQL. Using this evaluation procedure, all other compounds in both field duplicate pairs were found to be comparable.

A comparison, similar to the field duplicate comparison, was also made between the non-spiked compounds of the three MS/MSD pairs and their associated original, unspiked samples. The only difference in the comparison criteria was that a %RSD was used instead of an RPD when all three associated results were greater than five (5) times the CRQL. Upon completion of the evaluation, only the total xylene results for ECC-B09ASL were out of control. Thus, the reported result for this compound on the Data Summary has been qualified as estimated, "J".

NOTES

Please note that the laboratory reports concentrations that are below the CRQLs but above the instrument detection limits (IDLs) as estimated, "J", since there is an unacceptable level of accuracy at these levels.

There were no trip blanks associated with this sample delivery group, nor were there any storage blanks analyzed by the laboratory.

Please note that the laboratory did not report any tentatively identified compounds (TICs) with these data.

These data were reviewed according to the U.S. EPA Contract Laboratory Program's <u>National Functional Guidelines for Organic Data Review</u> (February 1994) and with reference to CLP methods and requirements. The results are presented in the Data Summary of this report and should be accepted as qualified.

INFORMATION REGARDING REPORT CONTENT

Attachments:

- 1. Glossary of Data Qualifier Codes.
- 2. Data Summary. This may include:
 - a) All positive results with qualifier codes, if applicable;
 - b) All unusable detection limits qualified with "R"; and
 - c) All estimated detection limits qualified with "UJ".
- 3. Appendix A Results as Reported by the Laboratory.
- 4. Appendix B Support Documentation which includes details to support the statements made in this report.

Dow Environmental Inc.

Penn Center West Building III, Suite 300 Pittsburgh, PA 15276 Fax: (412) 788-1316

(412) 788-2717

PGH-95-JJS-937

DATE:

August 24, 1995

TO:

Mr. Mark J. Dowiak

Dow Environmental Inc.

Penn Center West, Building III, Suite 300

Pittsburgh, Pennsylvania 15276

FROM:

John J. Smelko

Dow Environmental Inc.

SUBJECT:

Data Validation of Volatile Organic Compounds (VOCs)

Re: Enviro-Chem Superfund (ECC) Site

Ceimic Corporation Project Number: 950477 Sample Delivery Group (SDG) Number: B04CSL

DEI Project Number: 2455.005

Soil Samples:

B01DUP ECC-B01ASL ECC-B01ESL ECC-B04CSL ECC-B07CSL ECC-B10CSL ECC-B10CSL ECC-B10CSL ECC-B10CSL

ECC-B11DSL

Field Duplicates:

B01DUP is a field duplicate of ECC-B01ESL.

OVERVIEW

This set of samples, collected on July 11, 1995, from the Enviro-Chem Superfund Site in Zionsville, Indiana, contains eleven (11) soil samples, including one (1) field duplicate pair. All samples were prepared and analyzed for volatile organic compounds (VOCs) according to the U.S. EPA Contract Laboratory Program's (CLP) <u>Statement of Work for Organics Analysis</u>. <u>Multi-Media, Multi-Concentration</u> (Version OLM03.0).

SUMMARY

All compounds and analytes were successfully analyzed in all samples. The organic analytical data were evaluated by the following quality assurance/quality control (QA/QC) parameters where applicable: technical holding times and preservation, GC/MS instrument performance checks, initial and continuing calibrations, system monitoring compound/surrogate spike recoveries, method and field blanks, matrix spike/matrix spike duplicates (MS/MSDs), field duplicates, internal standard areas and retention times, analytical sequence, compound identification and quantitation, and transcription. Validated sample analysis results are listed on the attached Data Summary forms. Areas of concern with respect to data quality and usability are discussed below.

MAJOR ISSUES

All positive hits for acetone in all samples, including method blanks, have been determined to be non-detects based on a comparison of the sample/blank mass spectra versus the standard mass spectrum. Although the primary and secondary ions were present in each case, the mass spectra were poorly matched to that of the standard; several major ion peaks were missing from the sample spectra. Moreover, the peaks that were present in the samples were disproportionate with the standard relative ion intensities. Similarly, the 2-butanone result reported for method blank VBLKHE was deemed to be misidentified based on a poor mass spectral match; this value should be considered non-detect. Lastly, the mass spectrum for the 1,2-dichloroethene (total) concentration reported for sample ECC-B07ESLRE did not compare very well to that of the standard, but most of the prominent peaks were present in the sample. Taking this into consideration, there was a certain amount of doubt as to whether or not 1,2-dichloroethene (total) was actually present in this sample. Therefore, it must be considered to be tentatively identified, "N".

Based on the initial calibration used to set up instrument MS8, the incorrect contract required quantitation limits (CRQLs) were reported for 1,2-dichlorobenzene in all three medium concentration soil samples: ECC-B10ESL, ECC-B11CSL, and ECC-B11DSL. Each of these values was approximately eight (8) times higher than it should have been; the appropriate CRQL should be the same for all VOCs in each sample, which is calculated directly from the low point standard (10 parts per billion) in the initial calibration. The Data Summary reflects the proper concentrations for these CRQLs in these samples.

MINOR ISSUES

There was evidence of coelution problems in the mass spectra associated with benzene and chlorobenzene in samples ECC-B07ESL and ECC-B10CSL, respectively. Because of the

possibility for the final concentrations of these compounds to be biased, the reported results have been qualified as estimated, "J".

One or more of the following compounds were found at low level concentrations in all but one of the method blanks associated with the sample data in this package: chloromethane, methylene chloride, and 2-hexanone. As a result of this blank contamination, sample results for methylene chloride less than ten (10) times the highest blank value have been qualified as non-detect, "U". None of the chloromethane or 2-hexanone sample results were affected by this contamination since they were all non-detect; therefore, no action was required for these two compounds. Note that in instances where the affected sample concentration was less than the CRQL, the value was raised to the CRQL in addition to the application of the "U" flag.

Sample ECC-B07ESL had low internal standard areas for 1,4-difluorobenzene and chlorobenzene-d5. As a result, the laboratory reran it. Upon reanalysis, it became evident that there was a matrix effect involved, since chlorobenzene-d5 still had a low area count. After assessing the two analyses, it was determined that the "best" data to report on the Data Summary should come from the second run since only one area count was low. There were, however, a few exceptions. In an effort to take the more conservative approach, four compounds (vinyl chloride, 1,1-dichloroethane, 1,2-dichloroethene (total), and benzene) were taken from the first analysis of the sample, since these concentrations were higher than their counterparts. Of these four, only the benzene result has been qualified; this was due to the coelution problem discussed earlier.

The percent relative standard deviations (%RSDs) between the five initial calibration standard relative response factors (RRFs) for bromomethane and methylene chloride in two of the three instrument calibration sequences were greater than the 30 percent limit. Thus, all associated data have been qualified as estimated, "UJ", as they were all non-detect or qualified as non-detect due to blank contamination.

Many of the continuing calibration check standards had percent differences (%Ds) between their RRFs and the applicable mean initial calibration RRFs that were greater than the 25 percent control limit for one or more of the following compounds: methylene chloride, carbon tetrachloride, 4-methyl-2-pentanone, and 2-hexanone. Consequently, all associated sample results have been qualified as estimated, "UJ", as they were all non-detect.

NOTES

Please note that the laboratory reports concentrations that are below the CRQLs but above the instrument detection limits (IDLs) as estimated, "J", since there is an unacceptable level of accuracy at these levels.

All five relative percent differences (RPDs) between the matrix spike and matrix spike duplicate concentrations of sample ECC-B04CSL were high. However, since qualification of data should not be based on MS/MSD data alone, no flags were assigned.

After evaluating the results of the ECC-B01ESL/B01DUP field duplicate pair, it was determined that all reported compound concentrations were comparable. Note that an RPD of 50 percent was used as the control limit to make comparisons when both results of the field duplicate pair were greater than five (5) times the CRQL and a control limit of plus or minus two (2) times the CRQL was used when one or both concentrations of the pair were less than five (5) times the CRQL.

A comparison, similar to the field duplicate evaluation, was also made between the non-spiked compounds of the two MS/MSD pairs and their associated original, unspiked samples, ECC-B04CSL and ECC-B11CSL. The only difference in the comparison criteria was that a %RSD was used instead of an RPD when all three associated results were greater than five (5) times the CRQL. Upon completion of the evaluation, it was determined that all associated results in both sets were comparable.

There were no trip blanks associated with this sample delivery group, nor were there any storage blanks analyzed by the laboratory.

Please note that there were no tentatively identified compounds (TICs) reported with the volatile fraction of any samples in this data package.

These data were reviewed according to the U.S. EPA Contract Laboratory Program's National Functional Guidelines for Organic Data Review (February 1994) and with reference to CLP methods and requirements. The results are presented in the Data Summary of this report and should be accepted as qualified.

INFORMATION REGARDING REPORT CONTENT

Attachments:

- 1. Glossary of Data Qualifier Codes.
- 2. Data Summary. This may include:
 - a) All positive results with qualifier codes, if applicable;
 - b) All unusable detection limits qualified with "R"; and
 - c) All estimated detection limits qualified with "UJ".
- 3. Appendix A Results as Reported by the Laboratory.
- 4. Appendix B Support Documentation which includes details to support the statements made in this report.

Central Support Zone Investigation (CSZI) PID Readings, ppm (0 - 2 ft.)

Enviro-Chem Site Central Support Zone Investigation (CSZI) PID Readings, ppm (0 - 2 ft.)

Central Support Zone Investigation (CSZI) PID Readings, ppm (2 - 4 ft.)

Enviro-Chem Site Central Support Zone Investigation (CSZI) PID Readings, ppm (2 - 4 ft.)

Central Support Zone Investigation (CSZI) PID Readings, ppm (4 - 6 ft.)

Central Support Zone Investigation (CSZI) PID Readings, ppm (6 -8 ft.)

Central Support Zone Investigation (CSZI) PID Readings, ppm (6 - 8 ft.)

PID Readings, ppm (8 - 10 ft.)

Enviro-Chem Site
Central Support Zone Investigation (CSZI)
PID Readings, ppm (0 - 10 ft.)

A Horizon

	VALU	E USED FOR GRAP	HING	VALUE REPORTED					
	1,1 Dichloroethane	Trichloroethene	Tetrachloroethene	1,1 Dichloroethane	Trichloroethene	Tetrachloroethene			
B1	5.5 (2)	5.5 (2)	5.5 (2)	11.0 U	11.0 U	11.0 U			
B2	50.0 J	250.0	1600.0	50.0 J	250.0	1600.0			
В3									
B4									
B5									
В6									
B7									
B8	,	γ				, and the second second second second second second second second second second second second second second se			
В9	27.0 (2)	56.0	75.0	54.0 U	56.0	75.0			
B10									
B11									
B12									
B13									
B14		,							
B15	5.5 (2)	5.5 (2)	5.5 (2)	11.0 U	11.0 U	11.0 U			
B16	5.5 (2)	5.5 (2)	3.0 J	11.0 U	11.0 U	3.0 J			
	Shaded cells indicate					-			
,	Confirmed identificat								
Ŭ	Not detected. The associated number indicates approximate sample concentration necessary to be detected.								
R	Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.								
N	Presumptively present.								
J	Analyte present. Reported value may not be accurate or precise.								
UJ	Not detected. Quanti			se.	į				
NJ	Presumptively presen								
(1)	Eliminated from data			Ť					
(2)	1/2 of reported detect	ion limit. Detection	limit is at or below c	leanup objective.	<u> </u>				

	VALU	E USED FOR GRAI	PHING		VALUE REPORTED				
	1,1 Dichloroethane	Trichloroethene	Tetrachloroethene	1,1 Dichloroethane	Trichloroethene	Tetrachloroethene			
B1									
B2									
B3									
B4									
B5	1350.0 (2)	570.0 J	33000.0	2700.0 U	570.0∫J	33000.0			
B6									
B7									
B8									
B9									
B10									
B11	0=0 a (0)	0 2000 0	2000	1000 0 11	07000 0	0000.0			
B12	950.0 (2)	27000.0	3200.0	1900.0 U	27000.0	3200.0			
B13	28.0 (2)	28.0 (2)	28.0 (2)	56.0 U	56.0 U	56.0 U			
B14	42.0	34.0	12.5 (2)	42.0	34.0	25.0 U			
B15 B16									
D10	Chadad calls indicate	no comple tokon							
(NIO CODE)	Shaded cells indicate Confirmed identifica								
U U	Not detected. The as		dicatos approvimato	sample concentration	n necessary to be d	atacted			
R									
N	Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result. Presumptively present.								
ī	Analyte present. Reported value may not be accurate or precise.								
υj	Not detected. Quantitation limit may be inaccurate or imprecise.								
NJ	Presumptively prese				!				
(1)	Eliminated from data		and the second s	bjective.					
(2)	1/2 of reported detec								

	VALU	E USED FOR GRAI	HING	,	VALUE REPORTED				
	1,1 Dichloroethane	Trichloroethene	Tetrachloroethene	1,1 Dichloroethane	Trichloroethene	Tetrachloroethene			
B1									
B2									
B3	190.0 J	(1)	160.0 J	190.0 J	1500.0 U	160.0 J			
B4	5.5 (2)	5.5 (2)	5.5 (2)	11.0 U	11.0 U	11.0 U			
B5	1400.0 (2)	910.0 J	33000.0	2800.0 U	910.0 J	33000.0			
B6	170.0	47.0 J	70.0 J	170.0	47.0 J	70.0 J			
B7	6.0 (2)	6.0 (2)	6.0 (2)	12.0 U	12.0 U	12.0 U			
B8	65.0 (2)	910.0	65.0 (2)	130.0 U	910.0	130.0 U			
В9	, , , , , , , , , , , , , , , , , , , ,	,	,		,	,			
B10	6.5 (2)	9.0 J	6.5 (2)	13.0 U	9.0 J	13.0 U			
B11	750.0 (2)	3100.0	(1)	1500.0 U	3100.0	1500.0 U			
B12	700.0 (2)	220.0 J	(1)	1400.0 U	220.0 J	1400.0 U			
B13									
B14									
B15									
B16									
ļ	Shaded cells indicate								
	Confirmed identification				i j				
U	Not detected. The a								
R	•		not be present in the	sample. Supporting	data necessary to c	onfirm result.			
N	Presumptively present.								
J	Analyte present. Reported value may not be accurate or precise.								
UJ	Not detected. Quan			ecise.	,				
NJ	Presumptively prese								
(1)	Eliminated from dat		· •	•	į				
(2)	1/2 of reported dete	ction limit. Detection	n limit is at or below	v cleanup objective.					

	VALU	E USED FOR GRAI	PHING	,	VALUE REPORTED				
	1,1 Dichloroethane	Trichloroethene	Tetrachloroethene	1,1 Dichloroethane Trichloroethene		Tetrachloroethene			
B1									
B2									
В3	240.0 J	1300.0 J	1600.0	240.0 J	1300.0 J	1600.0			
B4									
B5									
B6									
B7	201	440.0	(F.O.(0)	201	440.0	120 0 11			
B8	2.0 J	440.0 J	65.0 (2)	2.0 J	440.0 J 24.0	130.0 U			
B9	5.5 (2)	24.0	5.5 (2)J	11.0 U	24.0	11.0 UJ			
B10 B11	700.0 (2)	4600.0	(1)	1400.0 U	4600.0	1400.0 U			
B12	700.0 (2)	4000.0	(1)	1400.0 0	4000.0	1400.0 0			
B13	6.0 (2)	6.0 (2)	6.0 (2)	12.0 U	12.0 U	12.0 U			
B14	21.0	3.0 J	6.5 (2)	21.0	3.0 J	13.0 U			
B15	21.0	را ۵.۵	5.5 ₁ (2)			20.0			
B16	6.5 (2)	6.5 (2)	6.5 (2)	13.0 U	13.0 U	13.0 U			
	Shaded cells indicate								
(NO CODE)	Confirmed identifica								
U	Not detected. The as	ssociated number in	dicates approximate	sample concentration	on necessary to be d	etected.			
R	Unreliable result. A	nalyte may or may	not be present in the	sample. Supporting	data necessary to c	onfirm result.			
N	Presumptively present.								
J	Analyte present. Reported value may not be accurate or precise.								
UJ	Not detected. Quant			ecise.					
NJ	Presumptively prese								
	Eliminated from data				į				
(2)	1/2 of reported detec	ction limit. Detection	on limit is at or below	v cleanup objective.	!				

E Horizon

	VALU	E USED FOR GRAP	HING	VALUE REPORTED				
	1,1 Dichloroethane	Trichloroethene	Tetrachloroethene	1,1 Dichloroethane	Trichloroethene	Tetrachloroethene		
B1	6.0 (2)	2.0 J	6.0 (2)	12.0 U	2.0 J	12.0 U		
B2	5.5 (2)	5.5 (2)	12.0	11.0 U	11.0 U	12.0		
В3	,				, , , , , , , , , , , , , , , , , , , ,			
B4	5.5 (2)	5.5 (2)	5.5 (2)	11.0 U	11.0 U	11.0 U		
B5	φ		7		· ·	γ		
B6	6.0 J	2.0 J 3.0 J	2.0 J 5.5 (2)J	6.0 J	2.0 J	2.0 J		
B7	39.0	3.0 J	5.5 (2)J	39.0	3.0 J	11.0 UJ		
B8								
B9		[1					
B10	700.0 (2)	(1)	(1)	1400.0 U	1400.0 U	1400.0 U		
B11								
B12								
B13								
B14	(= (0)	2012	(E (0)	100/11	201	40.0		
B15	6.5 (2)	2.0 J	6.5 (2)	13.0 U	2.0 J	13,0 U		
B16	Chadad aalla indicate							
	Shaded cells indicate Confirmed identifica							
	Not detected. The as		dicates annrovimate	sample concentration	on necessary to be de	etected		
R								
	Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result. Presumptively present.							
	Analyte present. Reported value may not be accurate or precise.							
	Not detected. Quantitation limit may be inaccurate or imprecise.							
	Presumptively prese							
	Eliminated from data			biective.				
' '	1/2 of reported dete		•	•	} i	!		

1,1 - Dichloroethane Results, ppb (2 - 4 ft.)

1,1 - Dichloroethane Results, ppb (4 - 6 ft.)

1,1 - Dichloroethane Results, ppb (6 - 8 ft.)

1,1 - Dichloroethane Results, ppb (8 - 10 ft.)

Central Support Zone Investigation (CSZI) Trichloroethene Results, ppb (0 - 2 ft.)

Central Support Zone Investigation (CSZI) Trichloroethene Results, ppb (2 - 4 ft.)

Central Support Zone Investigation (CSZI) Trichloroethene Results, ppb (4 - 6 ft.)

Central Support Zone Investigation (CSZI) Trichloroethene Results, ppb (6 - 8 ft.)

Central Support Zone Investigation (CSZI) Tetrachloroethene Results, ppb (2 - 4 ft.)

Central Support Zone Investigation (CSZI) Tetrachloroethene Results, ppb (0 - 2 ft.)

Central Support Zone Investigation (CSZI) Tetrachloroethene Results, ppb (2 - 4 ft.)

Central Support Zone Investigation (CSZI) Tetrachloroethene Results, ppb (4 - 6 ft.)

Central Support Zone Investigation (CSZI) Tetrachloroethene Results, ppb (6 - 8 ft.)

Enviro-Chem Site Central Support Zone Investigation (CSZI) Tetrachloroethene Results, ppb (8 - 10 ft.)

TABLE 2-1

ENVIRO-CHEM SUPERFUND SITE CENTRAL SUPPORT ZONE INVESTIGATION REPORT SOIL BORING LOCATION COORDINATES (1)

Soil Boring Number	Northing	Easting
B1	921960	725715
B2	921960	725765
В3	921960	725815
B4	921910	725715
B5	921910	725765
В6	921910	725815
В7	921860	725715
B8	921860	725765
В9	921860	725815
B10	921810	725715
B11	921810	725765
B12	921810	725815
B13		
B14		
B15		
B16		

NOTES:

- 1. Indiana State Plane Coordinate System
- 2. Borings B1 through B12 were field surveyed. Borings B13 through B16 were measured by tape and the locations are estimated as shown on Figure 2-1.

TABLE 2-2

ENVIRO-CHEM SUPERFUND SITE CENTRAL SUPPORT ZONE INVESTIGATION REPORT TARGET SOIL CONCENTRATIONS

(Consent Decree, Exhibit A, Table 3-1)

	Soil Concentrations (μg/kg)				
VOC	Exhibit A	Target (Exhibit A plus 25%)			
Acetone	490	612.5			
Chlorobenzene	10,100	12,625			
Chloroform	2,300	2,875			
1,1-Dichloroethane (DCA)	5.7	7.1			
1,1-Dichloroethene (DCE)	120	150			
Ethylbenzene	234,000	292,500			
Methylene Chloride	20	25			
Methyl Ethyl Ketone (MEK)	75	93.8			
2-Butanone (MIBK)	8,900	11,125			
Tetrachloroethene (PCE)	130	162.5			
Toluene	238,000	297,500			
1,1,1-Trichloroethane (TCA)	7,200	9,000			
1,1,2-Trichloroethane (TCA)	22	27.5			
Trichloroethene (TCE)	240	300			
Total Xylenes	195,000	243,750			

TABLE 3-1

ENVIRO-CHEM SUPERFUND SITE CENTRAL SUPPORT ZONE INVESTIGATION REPORT VOC HEADSPACE ANALYSES

Soil Boring	Headspace Sample	PID Reading (PPM)	Notes
В1	1A 1B 1C 1D 1D	1.5 0.0 0.2 0.0 0.0	Sent for lab analyses Sent for lab analyses
B2	2A 2B 2C 2D 2E	113.7 49.4 22.5 2.2 2.5	Sent for lab analyses Sent for lab analyses
В3	3A 3B 3C 3D 3E	10.6 40.7 700 1,267 658	Sent for lab analyses Sent for lab analyses
B4	4A 4B 4C 4D 4E	1.1 4.5 25.5 3.1 0.6	Sent for lab analyses Sent for lab analyses
В5	5A 5B 5C 5D 5E	529 1,340 264 142.8 72.6	Sent for lab analyses Sent for lab analyses
В6	6A 6B 6C 6D 6E	18.1 33.5 307 10.0 4.6	Sent for lab analyses Sent for lab analyses

TABLE 3-1

ENVIRO-CHEM SUPERFUND SITE CENTRAL SUPPORT ZONE INVESTIGATION REPORT VOC HEADSPACE ANALYSES

Soil Boring	Headspace Sample	PID Reading (PPM)	Notes
В7	7A 7B 7C 7D 7E	0.2 2.0 0.6 9.5 12.9	Sent for lab analyses Sent for lab analyses
В8	8A 8B 8C 8D 8E	5.3 8.3 71.7 67.0 25.3	Sent for lab analyses Sent for lab analyses
В9	9A 9B 9C 9D 9E	189 89 18.1 0.0 0.3	Sent for lab analyses Sent for lab analyses
B10	10A 10B 10C 10D 10E	1.3 10.8 15.6 7.6 27.3	Sent for lab analyses Sent for lab analyses
B11	11A 11B 11C 11D 11E	0.6 10.2 50.2 61.5 14.2	Sent for lab analyses Sent for lab analyses
B12	12A 12B 12C 12D 12E	47.4 494 691 249 28.5	Sent for lab analyses Sent for lab analyses

TABLE 3-1

ENVIRO-CHEM SUPERFUND SITE CENTRAL SUPPORT ZONE INVESTIGATION REPORT VOC HEADSPACE ANALYSES

Soil Boring	Headspace Sample	PID Reading (PPM)	Notes
B13	13A 13B 13C 13D 13E	20.0 36.6 1.0 6.8	Sent for lab analyses Sent for lab analyses No Sample (insufficient recovery)
B14	14A 14B 14C 14D 14E	1.2 AR 9.7 1.2	No Sample (insufficient recovery) Sent for lab analyses No Sample (auger refusal) Sent for lab analyses
B15	15A 15B 15C 15D 15E	5.3 0.6 0.0 0.0 0.0	Sent for lab analyses Sent for lab analyses
B16	16A 16B 16C 16D 16E	1.2 0.6 0.3	Sent for lab analyses No Sample (insufficient recovery) No Sample (suspected void zone) Sent for lab analyses

TABLE 3-2

ENVIRO-CHEM SUPERFUND SITE CENTRAL SUPPORT ZONE INVESTIGATION REPORT SOIL SAMPLE INFORMATION SUMMARY LABORATORY VOC TESTING

	Sample Location		Date		
Sample Number	Boring	Depth (Ft. BGS)	Sampled	Analyzed	Notes
ECC-B01 ASL	B1	0-2	7/11/95	7/12/95	Primary Grid (Perimeter) Primary Grid (Perimeter)
ECC-B01 ESL	B1	8-10	7/11/95	7/12/95	
ECC-B02 ASL	B2	0-2	7/12/95	7/13/95	Primary Grid (Interior)
ECC-B02 ESL	B2	8-10	7/12/95	7/13/95	Primary Grid (Interior)
ECC-B03 CSL	B3	4-6	7/12/95	7/13/95	Primary Grid (Interior) Primary Grid (Interior)
ECC-B03 DSL	B3	6-8	7/12/95	7/13/95	
ECC-B04 CSL	B4	4-6	7/11/95	7/12/95	Primary Grid (Perimeter) Primary Grid (Perimeter)
ECC-B04 ESL	B4	8-10	7/11/95	7/12/95	
ECC-B05 BSL	B5	2-4	7/12/95	7/13/95	Primary Grid (Interior)
ECC-B05 CSL	B5	4-6	7/12/95	7/13/95	Primary Grid (Interior)
ECC-B06 CSL	B6	4-6	7/12/95	7/13/95	Primary Grid (Interior)
ECC-B06 ESL	B6	8-10	7/12/95	7/13/95	Primary Grid (Interior)
ECC-B07 CSL	B7	4-6	7/11/95	7/12/95	Primary Grid (Perimeter) Primary Grid (Perimeter)
ECC-B07 ESL	B7	8-10	7/11/95	7/12/95	
ECC-B08 CSL	B8	4-6	7/12/95	7/13/95	Primary Grid (Interior) Primary Grid (Interior)
ECC-B08 DSL	B8	6-8	7/12/95	7/13/95	
ECC-B09 ASL	B9	0-2	7/12/95	7/13/95	Primary Grid (Interior) Primary Grid (Interior)
ECC-B09 DSL	B9	6-8	7/12/95	7/13/95	
ECC-B10 CSL	B10	4-6	7/11/95	7/12/95	Primary Grid (Perimeter) Primary Grid (Perimeter)
ECC-B10 ESL	B10	8-10	7/11/95	7/12/95	
ECC-B11 CSL	B11	4-6	7/11/95	7/12/95	Primary Grid (Perimeter) Primary Grid (Perimeter)
ECC-B11 DSL	B11	6-8	7/11/95	7/12/95	
ECC-B12 BSL	B12	2-4	7/12/95	7/13/95	Primary Grid (Interior) Primary Grid (Interior)
ECC-B12 CSL	B12	4-6	7/12/95	7/13/95	

TABLE 3-2

ENVIRO-CHEM SUPERFUND SITE CENTRAL SUPPORT ZONE INVESTIGATION REPORT SOIL SAMPLE INFORMATION SUMMARY LABORATORY VOC TESTING

	Sample Location		Date		
Sample Number	Boring	Depth (Ft. BGS)	Sampled	Analyzed	Notes
ECC-B13 BSL ECC-B13 DSL	B13 B13	2-4 6-8	7/13/95 7/13/95	7/14/95 7/14/95	Tier 1 Tier 1
ECC-B14 BSL ECC-B14 DSL	B14 B14	2-4 6-8	7/13/95 7/13/95	7/14/95 7/14/95	Tier 1 Tier 1
ECC-B15 ASL ECC-B15 ESL	B15 B15	0-2 8-10	7/13/95 7/13/95	7/14/95 7/14/95	Tier 1 Tier 1
ECC-B16 ASL ECC-B16 DSL	B16 B16	0-2 6-8	7/13/95 7/13/95	7/14/95 7/14/95	Tier 1 Tier 1
B01 DUP	B1	8-10	7/11/95	7/12/95	Duplicate of ECC-B01 ESL
ECC DUP 2	В6	8-10	7/12/95	7/13/95	Duplicate of ECC-B06 ESL
ECC DUP 3	B12	4-6	7/12/95	7/13/95	Duplicate of ECC-B12 CSL
ECC DUP 4	B16	6-8	7/13/95	7/14/95	Duplicate of ECC-B16 DSL

TABLE 3-3 Soil VOC Analyses

SAMPLE NUMBER	7		ECC-B01ASL		ECC-B01DUP		ECC-BO1ESI	_	ECC-B02ASL	_	ECC-B02ESL		ECC-B03CSL		ECC-B03DSL	
LABORATORY ID			950477-09		950477-11		950477-01		950480-01		950480-02		950480-03		950480-04	
ANALYTES	CRQL	MDL/IDL		- 5						:						
Chloromethane	10	2	11	U	12	Ü	12	U	110	U	11	U	1500	U	1400	U
Bromomethane	10	2	11	IJ	12	UJ	12	U	110	IJ	11	υJ	1500	Ū	1400	U
Vinyl Chloride	10	2	11	U	12	Ü	12	U	110	Ū	11	U	1500	U	1400	U
Chloroethane	10	2	11	U	12	U	12	U	110	U	11	U	1500	U	1400	Ū
Methylene Chloride	10	2	17	Ū	14	U	17	U	110	Ū	11	U	1500	IJ	1400	บป
Trichlorofluoromethane	10	2	11	υ	12	υ	12	U	110	U	11	U	1500	υ	1400	U
Acetone	10	2	11	U	12	U	12	U	110	U	11	U	1500	U	1400	U
Carbon Disulfide	10	2	11	U	12	U	12	U	110	Ū	11	U	1500	U	1400	Ü
1,1-Dichloroethene	10	2	11	U	12	Ū	12	U	110	U	11	Ü	1500	U	1400	U
1,1-Dichloroethane	10	2	11	U	12	Ū	12	U	50	J	11	U	190	J	240	J
1,2-Dichloroethene (total)	10	2	11	U	12	U	12	U	110		6	J	5800		7100	\perp
Chloroform	10	2	11	U	12	U	12	U	110	U	11	U	1500	U	1400	Ţυ
1,2-Dichloroethane	10	2	11	U	12	υ	12	U	110	U	11	U	1500	U	1400	U
2-Butanone	10	2	11	U	6	J	13		110	U	33	Ĺ	1500		2300	L
1,1,1-Trichloroethane	10	2	11	U	12	U	12	U	110	U	11	U	470	J	1500	L
Carbon Tetrachloride	10	2	11	U	12	U	12	U	110	U	11	U	1500	U	1400	U
Bromodichloromethane	10	2	11	U	12	U	12	IJ	110	U	11	U	1500	U	1400	U
1,2-Dichloropropane	10	2	11	U	12	C	12	C	110	U	11	U	1500	U	1400	U
cis-1,3-Dichloropropene	10	2	11	U	12	C	12	C	110	U	11	U	1500	U	1400	U
Trichloroethene	10	2	11	C	12	U	2	J	250		11	υ	1500	U	1300	J
Dibromochloromethane	10	2	11	C	12	U	12	C	110	U	11	U	1500	υ	1400	U
1,1,2-Trichloroethane	10	2	11	U	12	U	12	Ū	110	U	11	U	1500	U	1400	U
Benzene	10	2	11	U	12	U	12	U	110	U	11	U	1500	U	1400	U
trans-1,3-Dichloropropene	10	2	11	U	12	U	12	U	110	U	11	U	1500	U	1400	U
Bromoform	10	2	11	U	12	U	12	U	110	U	11	U	1500	U	1400	U
4-Methyl-2-Pentanone	10	2	11	U	12	U	12	U	110	บม	11	IJ	1500	٦	1400	U
2-Hexanone	10	2	11	U	12	U	12	U	110	UJ	11	IJ	1500	C	1400	U
Tetrachloroethene	10	2	11	Ü	12	U	12	U	1600		12		160	3	1600	┷
1,1,2,2-Tetrachioroethane	10	2	11	U	12	U	12	U	110	U	11	U	1500	U	1400	U
Toluene	10	2	11	Ü	12	U	12	U	810		2	J	4700		9200	
Chlorobenzene	10	2	11	U	12	U	12	U	110	U	11	٦	1500	U	1400	U
Ethylbenzene	10	2	11	Ü	12	U	12	U	410		11	υ	2200		4400	ـــــ
Styrene	10	2	11	U	12	U	12	U	110	U	11	U	1500	U	1400	U
Total Xylenes	10	2	11	U	12	U	12	U	1900		11	U	11000		22000	
1,2-Dichlorobenzene	10	1	11	ן ט	12	U	12	U	680	لـــا	1	J	3700		8000	
DILUTION FACTOR			1		1	\neg	1	1	10	T	1		125		125	
% SOLIDS			88		84	$\neg \neg$	82		94		90		86		87	

NOTE: Values adjusted based on data validation.

TABLE 3-3 Soil VOC Analyses

SAMPLE NUMBER	ECC-B04CSL	ECC-B04CSL			ECC-B05BSL		ECC-B05CSL		ECC-B06CSL		ECC-B06ESL		ECC-B07CSL		ECC-B07ESL		
LABORATORY ID	950477-01		950477-02		950480-05		950480-06		950480-07		950480-08		950477-03		950477-04RE	Ξ	
ANALYTES					Mac · · · · · · · · · · · · · · · · · · ·							34			950477-04RE		
Chloromethane	11	U	11	U	2700	U	2800	U		C	11	U		υ	11	Ţυ	
Bromomethane	11	C	11	U	2700	٦	2800	U		Ę	11	ÜJ		٦	11	U	
Vinyl Chloride	11	IJ	11	U	2700	J	2800	U		C	11	U	12	υ	40	4_	
Chloroethane	11	U	11	U	2700	5	2800	U		U	11	U	12	U	11	ļυ	
Methylene Chloride	11	U	20	W		5	2800	W		U	11	U	30	ໜ	40	UJ	
Trichlorofluoromethane	11	U	11	U	2700	٦	2800	U		U	11	U	12	U	11	J	
Acetone	11	U	11	U	2700	U	2800	U		U	11	U	12	U	11	U	
Carbon Disulfide	11	U	11	U	2700	>	2800	U		U	11	U	12	υ	11	U	
1,1-Dichloroethene	11	U	11	U	2700	 	2800	U		U	11	U	12	U	11	U	
1,1-Dichloroethane	11	U	11	U	2700	5	2800	U	170	ᆜ	6	Ì	12	U	39	┦—	
1,2-Dichloroethene (total)	11	E	11	U	1700	J	510	17		E	110	J	12	٦	160	+	
Chloroform	11	C	11	U	2700	C	2800	U		U	11	U	12	U	11	U	
1,2-Dichloroethane	11	U	11	U	2700	ح	2800	U		Ξ	11	U	12	U	11	U	
2-Butanone	6	J	11	U	2700	ح	2800	U		U	11	U		U	11	U	
1,1,1-Trichloroethane	11	U	11	U	620	J	2000	J		٦	11	U	12	U	11	U	
Carbon Tetrachloride	11	U	11	U	2700	5	2800	U		U	11	U	12	U	11	U	
Bromodichloromethane	11	U	11	U	2700	۲	2800	U		U	11	U	12	Γ	11	U	
1,2-Dichloropropane	11	Ü	11	U	2700	٦	2800	U		U	11	U	12	U	11	U	
cis-1,3-Dichloropropene	11	Ü	11	U	2700	U	2800	U		C	11	U	12	U	11	U	
Trichloroethene	11	C	11	U	570	۲	910	J	47	7	2	J	12	c	3	J	
Dibromochloromethane	11	U	11	U	2700	٦	2800	U		и	11	U	12	U	11	U	
1,1,2-Trichloroethane	11	U	11	Ų	2700	٦	2800	U		U	11	U	12	U	11	U	
Benzene	11	U	11	U	2700	5	2800	U		C	11	U	12	U	4	11	
trans-1,3-Dichloropropene	11	U	11	U	2700	5	2800	U		U	11	U	12	U	11	U	
Bromoform	11	U	11	U	2700	٦	2800	U		U	11	U	12	C	11	U	
4-Methyl-2-Pentanone	11	IJ	11	U	2700	C	2800	U		U	11	IJ	12	C	11	IJ	
2-Hexanone	11	UJ	11	w		5	2300	J		U	11	IJ		IJ	11	IJ	
Tetrachloroethene	11	C	11	U	28000		33000	<u> </u>	70	J	2	7	12	C	11	IJ	
1,1,2,2-Tetrachloroethane	11	Ū	11	U	2700	C	770	1		<u>U</u>	11	U	12	U	11	IJ	
Toluene	2	7	11	U	940	J	410	J	750	\Box	5	J	12	c	11	IJ	
Chlorobenzene	11	U	11	5	2700	5	2800	U		u	11	U	12	U	11	IJ	
Ethylbenzene	11	U	11	Ü	2700	٥	2800	U	1400	_1	5	J	12	υ	11	ΠŊ	
Styrene	11	υ	11	C	2700	c	410	J		U	11	U	12	U	11	เกา	
Total Xylenes	11	U	11	C	980	7	990	J	2100		7	1	12	U	11	IJ	
1,2-Dichlorobenzene	11	U	11	Ü	400	J	2800	U	1400	i	18	<u> </u>	12	U	11	ŊĴ	
DILUTION FACTOR	1		1		250		250		10		11	_	1		1		
% SOLIDS	88		88		91		90		88	٦	89		81]	89		

NOTE: Values adjusted based on data validat

TABLE 3-3 Soil VOC Analyses

SAMPLE NUMBER	TECC-B08CSL	CC-B08CSL ECC-B08DS		L ECC-BO8DSLDL			ECC-B09ASL		ECC-B09DSL		ECC-B09DSLRE		ECC-B10CSL		ECC-B10ESL	
LABORATORY ID	950480-09		950480-10		950480-10DL		950480-11		950480-12		950480-12RE		950477-05		950477-06	
LABORATORY ID	350400-03		000 100 10			V 13			1 201	· 3						
ANALYTES								3							4400	
Chioromethane	130	U	12	IJ		DJ	54	U	11	U	57	l u	13	ļ.		방
Bromomethane	130	IJ	12	IJ		BDJ	54	U	11	W	57	l <u>u</u>	13	방	1400	Ü
Vinyl Chloride	130	U	12	ປນ		U	54	U	11	U	57	Ų.	13	H	1400	Ü
Chloroethane	130	U	12	UJ		U	54	U	11	U	57	빎		닚		lu ₃
Methylene Chloride	130	U	12	W		BDJ	54	UJ		<u>_</u>	35			U	1400	103
Trichlorofluoromethane	130	U	12	W		U	54	U	11	U	57	U				10
Acetone	130	U	12	เก	37	BDJ	54	U	11	U	57	ļ.	13	U	1400	Ü
Carbon Disulfide	130	U	12	UJ		U	54	U		Ų	57	ļ <u>u</u>	13	10	1400	10
1,1-Dichloroethene	130	U	12	บา		U	54	U	11	U	57	Ų.		U		10
1,1-Dichloroethane	130	U	2	1	62	U_	54	U	11	U	57	l u	13	片	3300	+4
1,2-Dichloroethene (total)	1500	L	770	J	770	D	33	1	25	1	57	U		님		U
Chloroform	130	U	12	IJ		l u	54	U	11	U	57		13	l ü		Ü
1,2-Dichloroethane	130	U	12	บบ		U	54	U		U	57	l u		1 4	1000	1
2-Butanone	130	υ	12	UJ		U	54	U	18	+	57	U		Ιυ		Ü
1,1,1-Trichloroethane	130	U	12	IJ		U	54	U		U	57			ΙÜ	1	Ü
Carbon Tetrachloride	130	U		UJ		U	54	U		Ų.	57	H		T U		U
Bromodichloromethane	130	U	12	IJ		U	54	U		1 !!	57	U	13	l ü		Ü
1,2-Dichloropropane	130	U		IJ		U	54	U		U	57	남		Ü		ΤÜ
cis-1,3-Dichloropropene	130	U		UJ		U	54	U	11	1U	57	남		1 5		TÜ
Trichloroethene	910	\perp	440	1	440	D	56	٠.	24	 	57 57	10		tö		Ü
Dibromochloromethane	130	U	<u> </u>	UJ		U	54	U		Į U	57	۱ü		Ü		U
1,1,2-Trichloroethane	130	U		υJ		U	54	Ų		U	57	Hü	<u></u>	tü		T U
Benzene	130	U	12	υJ		U	54	U		l u	57	남		lΰ		U
trans-1,3-Dichloropropene	130	U		υJ		1 U	54	U		U	57	tü		Ϊ́υ		Ü
Bromoform	130	υ		U.J		<u>u</u>	54	U			57	lΰ		ᆸ		Τ υ
4-Methyl-2-Pentanone	130	UJ		UJ		1 4	54	U		믮	57	lü		tΰ		Ŭ
2-Hexanone	130	UJ		UJ		U	54	W		N)	57	Ü		tü		TŬ
Tetrachloroethene	130	U		J	62	U	75	- 	11	100	57	tö		tΰ		Ü
1,1,2,2-Tetrachioroethane	130	JU		υJ		U	54	Ų			23	15		J	1400	Ŭ
Toluene	130	U		J	62	U	40	1	39	1.	57	tü		+;	1400	Ť
Chlorobenzene	130	Ţυ		UJ		l u	54	ļŲ		m	57	tü		ان		Ü
Ethylbenzene	130	Ţυ		UJ		U	44	17	16	107	57	10		Τŭ		ΙŬ
Styrene	130	U		UJ		U	54	U		_	69	۲,	8	1 5		T Ŭ
Total Xylenes	130	U		υJ		U	220	17		11		lυ		+=	1400	ΙŬ
1,2-Dichlorobenzene	130	Ū	12	Ŋ.	62	U	54	U	11	W	57	ΙU		ــــــــــــــــــــــــــــــــــــــ	1 1700	
					.,								1		Ţ <u></u>	
DILUTION FACTOR	10		1		5		5		11		5		78		89	
% SOLIDS	79		81		81		92		88		88		1 /6		1 03	

NOTE: Values adjusted based on data validat

TABLE 3-3 Soil VOC Analyses

SAMPLE NUMBER	ECC-B11CSL	7	ECC-B11DSL		ECC-B12BSL		ECC-B12BSLDL		ECC-B12CSL	_	ECC-DUP2		ECC-DUP2DL	ECC-DUP3		
LABORATORY ID	950477-07	7	950477-08		950480-13	٦	950480-13DL		950480-14	I	950480-15		950480-15DL		950480-18	
ANALYTES				÷ ;						entrantes com-		, Salar				
Chloromethane		υ	1400	U		<u>니</u>		U	1400 U	_		U	56	U	1400	Į U
Bromomethane		U	1400	U		U		٦	1400 U			IJ	56	U	1400	U
Vinyl Chloride		U	1400	U		U		٦	1400 U		8	J	56	U	1400	U
Chloroethane		U	1400	υ		υ		٥	1400 U	_		U	56	U	1400	U
Methylene Chloride	1500 L	13	1400	IJ		В		r ₂	1400 U.	_	11	U	30	BDJ	1400	IJ
Trichlorofluoromethane		<u>u l</u>	1400	U		U		U	1400 U	_	11	U	56	U	1400	U
Acetone	1500	υŢ	1400	U		В		9	1400 U	-	11	U	56	U	1400	U
Carbon Disulfide	1500	υŢ	1400	U		Ū		2	1400 U	_		U	56	U	1400	U
1,1-Dichloroethene	1500	υ	1400	U		J		U	1400 U	_	11	U	56	U	1400	U
1,1-Dichloroethane	1500	υ	1400	U	1900	Ū		٦	1400 U	-	22		56	U	1400	U
1,2-Dichloroethene (total)	800	J	1300	J	10000	┙	10000	۵	800 J	_	400	J	290	D	1100	J
Chloroform	1500	υŢ	1400	U		J		U	1400 U	_	11	U	56	U	1400	Ü
1,2-Dichloroethane	1500	ŪŢ	1400	U		U		U	1400 U	_	11	U	56	U	1400	U
2-Butanone	1500	υŢ	1400	U	3800	В			1400 U	_	11	U	56	U	1400	U
1,1,1-Trichloroethane	570	J	1100	J	2200		2100	DJ	1400 U		1	J	56	U	1400	U
Carbon Tetrachloride	1500	ַנו	1400	U		U		U	1400 U	_	11	U	56	U	1400	[m
Bromodichloromethane	1500	υŢ	1400	υ	1900	U		U	1400 U	_	11	U	56	U	1400	U
1,2-Dichloropropane	1500	υŢ	1400	U	1900	U		U	1400 U	_	11	U	56	U	1400	U
cis-1,3-Dichloropropene	1500	ŪΪ	1400	U	1900	U		υ	1400 U	_	11	U	56	U	1400	U
Trichloroethene	3100	\Box	4600		27000		27000	D	220 J	-	5	J	56	U	180	J
Dibromochloromethane	1500	υŢ	1400	U	1900	U		U	1400 U	_	11	U	56	U	1400	U
1,1,2-Trichloroethane	1500	υŢ	1400	υ	1900	U		U	1400 U	_	11	U	56	U	1400	U
Benzene	1500	U	1400	U		U		٦	1400 U	_	11	U	56	U	1400	U
trans-1,3-Dichloropropene	1500	U	1400	U		U		U	1400 U	-	11	U	56	U	1400	U
Bromoform	1500	U	1400	U	1900	U		U	1400 U	_	11	υ	56	Ų	1400	U
4-Methyl-2-Pentanone		ŪΙ	1400	U		J	3700	U	880 J	_		IJ	56	U	1100	J
2-Hexanone	1500	Ū	1400	U		U		U	1400 U	_		W	56	U	1400	U
Tetrachloroethene		σŢ	1400	U	3200		3300	Ы	1400 U	_	4	J	56	U	1400	U
1,1,2,2-Tetrachloroethane		Ū	1400	U		U		U	1400 U	-		IJ	56	U	1400	U
Toluene	1500	ŪŢ	1400	U	54000	E			10000 J	-	13	J	56	U	17000	J
Chlorobenzene	1500	ŪΙ	1400	U		J		U	1400 U	-		υJ	56	U	1400	U
Ethylbenzene	1500	υŢ	1400	U	3800	_]	3600	2	190 J		7	J	56	<u>u</u>	350	1
Styrene		ŪŢ	1400	Ü	1900	U		U	1400 U			UJ	56	U	1400	U
Total Xylenes		ŪΙ	1400	U	14000	_]	13000	D	880 J	_	11	J	56	U	1200	J
1,2-Dichlorobenzene	1500	υŢ	1400	Ü	2200		1900	DJ	1400 U	<u> 1</u>	6	J	56	U	1400	U
															· · · · · · · · · · · · · · · · · · ·	
DILUTION FACTOR	1	J	1		125		250	I	125	1	1		5		125	
% SOLIDS	84	7	91		67		67		88		89		89		89	

NOTE: Values adjusted based on data validat

TABLE 3-3 Soil VOC Analyses

STATION ID:			ECC-B15A		ECC-B15E		ECC-B16A		ECC-B16D		ECC-B13B		ECC-B13D		ECC-B14B		ECC-B14D		ECC-DUPO)4
LABORATORY ID:			950487-01		950487-02		950487-03		950487-04		950487-05		950487-06		950487-07		950487-08		950487-09	 -
ANALYTES	CRQL	MDL/IDL					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				\$							***		
Chloromethane	10	2	11	U	13	U	11	U	13	U	56	Ū	12	U	25	Ū	13	U	13	Ţυ
Bromomethane	10	2	11_	W	13	W	11	IJ	13	υJ	56	IJ	12	ม	25	IJ	13	W	13	U.
Vinyl Chloride	10	2	11	U	13	U	11	Ü	13	U	56	U	12	5	25	U	17	NJ	13	U
Chloroethane	10	2	11	Ū	13	Ū	11	C	13	U	56	U	12	C	25	U	13	U	13	U
Methylene Chloride	10	2	11	U	13	U	11	C	13	U	56	U	25	υ	25	U	13	U	57	U.
Trichlorofluoromethane	10	2	11	U	13	U	11	Ü	13	U	56	U	12	٥	25	U	13	U	13	U
Acetone	10	2	11	U	13	U	11	C	13	U	56	U	12	υ	25	U	13	U	13	Ťů
Carbon Disulfide	10	2	22		13	U	11	Ū	13	U	7	J	12	C	25	U	7	J	13	Tu
1,1-Dichloroethene	10	2	11	U	13	U	11	C	13	U	56	U	12	Ü	25	U	13	U	13	Ū
1,1-Dichloroethane	10	2	11	U	13	U	11	U	13	Ü	56	υ	12	ΰ	42		21		13	U
1,2-Dichloroethene (total)	10	2	11	U	3	J	11	υ	13	U	6	J	14		350		220		13	U
Chloroform	10	2	11	U	13	U	11	C	13	C	56	U	12	C	25	U	13	U	13	U
1,2-Dichloroethane	10	2	11	U	13	U	11	U	13	5	56	U	12	C	25	U	13	U	13	Tu
2-Butanone	10	2	37		13	U	_11	U	67		56	U	26		31	J	57	J	47	\top
1,1,1-Trichloroethane	10	2	11	U	13	U	11	U	13	Ü	56	U	12	C	6	J	13	U	13	U
Carbon Tetrachloride	10	2	11	U	13	U	11	U	13	ح	56	υ	12	U	25	٦	13	C	13	Ū
Bromodichloromethane	10	2	11	U	13	V	11	U	13	C	56	J	12	ς	25	ح	13	U	13	U
1,2-Dichloropropane	10	2	11	U	13	U	11	C	13	٦	56	υ	12	C	25	ح	13	U	13	Ū
cis-1,3-Dichloropropene	10	2	11	U	13	U	11	U	13	υ	56	ح	12	U	25	υ	13	U	13	Ū
Trichloroethene	10	2	11	U	2	-	11	U	13	C	_56	٦	12	U	34		3	J	13	U
Dibromochloromethane	10	2	11	U	13	U	11	U	13	U	56	5	12	U	25	٦	13	U	13	U
1,1,2-Trichloroethane	10	2	11	U	13	U	11	υJ	13	U	56	U	12	U	25	U	13_	U	13	U
Benzene	10	2	11	U	13	U	11	U	13	C	56	J	12	υ	25	υ	13	U	13	U
trans-1,3-Dichloropropene	10	2	11	U	13	U	11	U	13	J	56	U	12	U	25	U	13	U	13	U
Bromoform	10	2	11	U	13	U	11	U	13	U	56	U	12	U	25	U	13	U	13	U
4-Methyl-2-Pentanone	10	2	11	U	13	U	11	U	13	U	56	U	12	U	25	U	13	U	13	U
2-Hexanone	10	2	11	U	13	U	11	U	13	U	56	U	12	U	25	U	13	U	13	Ųυ
Tetrachloroethene	10	2	11	U	13	U	3	J	13	U	56	υ	12	U	25	U	13	U	13	U
1,1,2,2-Tetrachloroethane	10	2	11	U	13	U	11	U	13	U	56	U	12	U	25	U	13	U	13	U
Toluene	10	2	2	J	13	U	1	J	1	J	10	Ĵ	12	U	25	U	2	J	1	J
Chlorobenzene	10	2	11	U	13	υ	11	U	13	U	56	υ	12	U	25	U	13	υ	13	Jυ
Ethylbenzene	10	2	2	J	13	U	11	U	13	U	13	J		U	25	U	3	J	13	U
Styrene	10	2	11	U	13	٦	11	Ü	13	U	56	υ	12	U	25	U	13	U	13	Tu
Total Xylenes	10	2	3	J	13	כ	11	Ü	13	U	120		12	υ	25	U	9	J	13	U
1,2-Dichlorobenzene	10	1	11	U	13	U	11	U	13	U	56	U	12	U	25	U	4	J	13	U
DILUTION FACTOR		1	1		1		1		1		5		1		2		1	T	1	
% SOLIDS			87		79		88	\neg	77	\neg	90		80	7	80		79	1	75	

NOTE: Values adjusted based on data validation.

TABLE 3-4 Aqueous VOC Analyses

STATION ID:	7		ECC_RINSATI	E	ECC-DS_WATER	₹
LABORATORY ID:			950480-16		950480-17	
ANALYTES	CRQL	MDL/IDL				
Chloromethane	10	2	10	U	10	U
Bromomethane	10	2	10	U	10	U
Vinyl Chloride	10	2	10	U	10	TU
Chloroethane	10	2	10	U	10	U
Methylene Chloride	10	2	8	J	7	J
Trichlorofluoromethane	10	2	10	Ü	10	U
Acetone	10	2	10	UJ	10	UJ
Carbon Disulfide	10	2	10	U	10	ŢŪ
1,1-Dichloroethene	10	2	10	U	10	U
1,1-Dichloroethane	10	2	10	U	10	U
1,2-Dichloroethene (total)	10	2	10	U	10	U
Chloroform	10	2	10	U	10	U
1,2-Dichloroethane	10	2	10	U	10	U
2-Butanone	10	2	10	W	10	W
1,1,1-Trichloroethane	10	2	10	U	10	U
Carbon Tetrachloride	10	2	10	U	10	U
Bromodichloromethane	10	2	10	U	10	Ū
1,2-Dichloropropane	10	2	10	U	10	Ū
cis-1,3-Dichloropropene	10	2	10	U	10	U
Trichloroethene	10	2	10	U	10	U
Dibromochloromethane	10	2	10	U	10	U
1,1,2-Trichloroethane	10	2	10	U	10	U
Benzene	10	2	10	W	10	UJ
trans-1,3-Dichloropropene	10	2	10	U	10	U
Bromoform	10	2	10	W	10	บบ
4-Methyl-2-Pentanone	10	2	10	U	10	U
2-Hexanone	10	2	10	W	10	UJ
Tetrachloroethene	10	2	10	U	10	Ü
1,1,2,2-Tetrachloroethane	10	2	10	U	10	U
Toluene	10	2	10	W	10	ĺΩ
Chlorobenzene	10	2	10	IJ	10	UJ
Ethylbenzene	10	2	10	ŪĴ	10	UJ
Styrene	10	2	10	IJ	10	ŪJ
Total Xylenes	10	2	10	UJ	10	UJ
1,2-Dichlorobenzene	10	1	10	W	10	υJ
DILUTION FACTOR			1		1	

NOTE: Values adjusted based on data validation.

GLOSSARY OF DATA QUALIFIER CODES

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds)

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.

(NO CODE) = Confirmed identification.

R = Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.

N = Presumptively present.

CODES RELATED TO QUANTITATION

(can be used for positive results and sample quantitation limits)

J = Analyte present. Reported value may not be accurate or precise.

UJ = Not detected. Quantitation limit may be inaccurate or imprecise.

NJ = Presumptively present at an estimated concentration.